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Chance-constrained optimization based PV hosting
capacity calculation using general Polynomial Chaos
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Abstract—Increased penetration of renewable resources and
new loads have increased the uncertainty levels in low voltage
distribution systems (LVDS). This requires considering LVDS
planning, such as computing photovoltaics (PV) hosting capacity
(HC), as a stochastic problem. Traditionally, PV HC is computed
using the iterative Monte Carlo method, which requires solving
the power flow equations thousands of times. This paper proposes
a chance-constrained optimization-based hosting capacity calcula-
tion technique, which eliminates the necessity of repetitive solving
of power flow equations. The intrusive general polynomial chaos
expansion is used to translate the input uncertainties defined by
their probability density function to the hosting capacity of the
network without the necessity of sampling, linearizing the power
flow equations, or applying any relaxations. Chance constraints
are applied for nodal voltages and thermal overload as per the
norms, where the system can be congested for a certain time
without affecting the power quality. Numerical illustrations show
the computational time to compute the stochastic PV hosting
capacity of a real large scale LVDS, and for the majority of the
feeders, it falls within 100 sec. Furthermore, the estimated PV
HC using this stochastic optimal power flow was, on average,
20% higher than its deterministic counterpart.

Keywords—AC optimal power flow, hosting capacity, low voltage
distribution system, general polynomial chaos, chance-constrained.

NOMENCLATURE

Operators
E Expectation operator
M Pre-calculated multiplication tensor of orthogonal

polynomials
P Probability operator
V Variance operator
〈.〉 Inner product of orthogonal polynomials
Indices and sets
d ∈ D Set of LV consumer
di ∈ T d Tuple set of device-d in bus-i
i ∈ I ref Set of reference node
j, i ∈ I Set of nodes
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k ∈ K Set of the coefficient of orthogonal polynomials bases
lji ∈ T l Tuple set of branch-l from bus-j to bus-i
l ∈ L Set of branches in the feeder
lij ∈ T l Tuple set of branch-l from bus-i to bus-j
p ∈ P Set of installed PV devices
pi ∈ T p Tuple set of PV installation-p connected to bus-i
P rt Set of available PV ratings
s ∈ S Set of source generator
si ∈ T s Tuple set of source-s and bus-i
T l Union Set branch tuples: T l ∪ T l

u ∈ U Set of units, load, PV or source
Variables and parameters
bsh Shunt susceptance
E Solar Irradiance
gsh Shunt conductance
HC Hosting Capacity
I Current
Ire Real part of Current
Iim Imaginary part of current
I rated Rated current of a line
J Lifted current variable
J vector of lifted current variables
P Real Power
Q Imaginary Power
Pmin Lower limit of real power
Pmax Upper limit of real power
P ref Reference Real power
P nom Nominal real power
P kWp PV rating in kWp
Φ Orthogonal polynomials
Qmin Lower limit of imaginary power
Qmax Upper limit of imaginary power
Qref Reference Imaginary power
rs Series resistance
S Power
U Voltage
Ure Real part of the voltage
Uim Imaginary part of the voltage
Uref Voltage at reference bus
Umin Minimum voltage in a feeder
Umax Maximum voltage in a feeder
W Lifted voltage
W Vector of Lifted voltage variables
xs Series reactance
ys Series admittance
ysh Shunt admittance
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zs Series impedance

I. INTRODUCTION

A. Background and Motivation
Determining the hosting capacity (HC) of a Low Voltage

Distribution System (LVDS) is a planning problem where the
additional generation and/or load is determined that can be
connected to the system without violating its performance
limits. Given the increased connection of weather-dependent
photovoltaics (PV) generation and new types of load, e.g.,
electric vehicles and heat pumps, the level of uncertainty in
LVDS has increased, and consequently determining its HC
becomes a multidimensional stochastic problem. Furthermore,
the performance limits of a LVDS are not absolute as they
may be violated momentarily [1]. Consequently, for LVDS,
a risk-based stochastic HC model enables improved decision-
making [2].

The uncertainties in LVDS are categorized into different
types. In [3], three types of uncertainties are proposed:

1) planning, e.g., location, size and type of PV installations,
2) feeder, e.g., feeder length, consumer phase, and
3) operational, e.g., load and PV generation.

The former two types are generally described by discrete
random variables, whereas the latter is described by continuous
random variables. Despite the difference in these variables,
these uncertainties are often sampled together in an iterative
MC-based stochastic HC method for computational tractability.
The analytical alternative, such as non-intrusive polynomial
chaos expansion, can be used as an alternative to reduce
the computation time of the Monte Carlo (MC) based HC
computation if the uncertainties can be represented by con-
tinuous distributions [4]. However, planning uncertainties are
represented as unknowns rather than in terms of a Probability
Density Function (PDF) [5]. Therefore, the risks presented
by the operational variables are different from the planning
risk. A decoupled HC method can incorporate these two
types of risks in the same model [3]. However, such methods
usually use a brute force approach where all planning scenarios
are evaluated individually [3], [5]. Consequently, there is a
need for a novel method that allows the incorporation of
continuous random variables, i.e., the operational uncertainties
and discrete planning and feeder variables, in a single model,
in a computationally tractable manner.

B. Literature Review
In [6], [7], existing PV HC methods for LVDS are reviewed,

and both deemed considering uncertainties in calculating HC
to be important. The available deterministic and stochastic
PV HC calculation methods in the literature are evaluated
and benchmarked in [2]. Stochastic methods consider planning
and operational uncertainties, while deterministic methods
only take into account one possible operational scenario, e.g.,
peak generation PV with low load. The HC obtained from
deterministic methods are based on a single snapshot of a
number of possible combinations of stochastic variables and,
therefore, provide a rough estimate of the HC. In contrast,

the stochastic HC calculation provides a more comprehensive
estimation of the HC. Another observation from [2] is that
every feeder in a network had a different HC, and therefore
there is no single number that defines the HC of all feeders.
The underlying assumptions of every HC calculation method,
e.g., size of PV, their allocation, and the increment rate of PV
size and number, influence the HC of a feeder. Apart from
the way of allocating PV, the assumption on the stochastic
and operational constraints applied to the voltage and current
directly influences the calculated HC. An important takeaway
was the use of stochastic constraints, also known as chance-
constraints (CC), in HC calculation which is deemed necessary
to prevent the calculation of HC for the worst-case [2], [8].

The stochastic HC methods in literature usually rely on
MC based methods [2], [9]. Due to the high computation
time associated with MC methods, these methods are usually
demonstrated using representative feeders [10], reducing the
input source of uncertainties [11] and checking only a few
operational parameters [12]. The calculated PV HC is a subop-
timal solution, that is, the one with the highest total PV among
the considered PV deployment scenarios. The Optimal Power
Flow (OPF) and Stochastic Optimal Power Flow (SOPF) based
methods to calculate PV HC in an optimization framework are
scarce and in most approaches, many assumptions are made to
linearize or relax the problem. In [13], [14], optimisation based
methods were proposed for medium voltage (MV) feeders with
a fixed location of PV. The authors proposed a worst-case
analysis using robust optimization in [13] while linearizing the
power flow (PF) equations and considering the load of con-
sumers as the only source of uncertainty. The method improved
the computational speed from 84 hrs in the traditional iterative
method to 21 s. In [14], a two-stage optimization method was
proposed that considers uncertainties in loads and distributed
generation, where the operating point is approximated first
before calculating the optimal PV HC. The method also used
MC to formulate the scenarios of PV location and applied a
worst-case analysis. In [15], an orthogonal-polynomial based
system was proposed to calculate the PV HC when continuous
probability density functions represent the uncertainties. This
method resulted in the risk associated with a particular scenario
of PV penetration without any optimization involved. In [16],
an analytic-probabilistic approach to distributed generation HC
evaluation for radial feeders using an analytical method called
Herman Beta Extend transform was demonstrated. This is a
moment-based transformation of the power flow equations,
where the power flow equation are linearized using Taylor’s
expansion. The method works only when a Beta distribution
represents the uncertainty of the inputs. The proposed method
also assumes that the output voltage and current follow a Beta
distribution, which is not necessarily true due to the nonlinear
nature of the power flow equations. However, the method
reduced the computational time compared to MC simulations,
from days to a few minutes. A scenario-based CC-OPF was
presented in [17], where the authors applied chance constraints
in the curtailment risk, but an increasing number of scenarios
had a huge toll on computation time. The authors of [8] used an
actual LV feeder from the UK to demonstrate a stochastic OPF
based HC of PV with storage, which calculated the minimum
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and maximum HC of each feeder. However, the method relies
on linearizing the power flow equations, uses MC samples of
load and PV generation, uses worst-case voltage and current
limits instead of chance constraints, and assumes PV size as
a constant rather than a variable. The only variable optimized
was the number and the location of PV. In [18], a method
for calculating stochastic HC for LV networks of the UK is
proposed as an optimization problem. A bisection algorithm
is used for obtaining optimal PV size and location where
the maximum voltage in the feeder is equal to the voltage
limit. This method uses linearized power flow and does not
consider uncertainties in PV generation and consumer load.
However, these methods clearly show the benefits of moving
from the scenario-based method or iterative MC based methods
to SOPF based calculations. The benefits are: a) reduction
in computational time from days to seconds, b) similar or
better accuracy, c) easy scale-up for a large service area, and
d) minimum input and output data processing requirement.
SOPF based methods also makes comparing different PV
scenarios faster and easier compared to scenario based MC
methods. So far, the methods proposed in literature do not
include a full AC formulation but rely on relaxations of the
power flow equations. The general Polynomial Chaos (gPC)
expansion based CC-OPF introduced in [19] uses a full Rect-
angular Power-Voltage (ACR) formulation of the power flow.
In [20], the authors use the Rectangular Current-Voltage (IVR)
formulation of gPC-CC-OPF with auxiliary variables to make
the problem scalable compared to the ACR formulation. It is
to be noted that ACR is shown to have the best computational
performance in solving OPF [21]. However, the possibility of
zero voltage in gPC-based stochastic reformulation might lead
to a disconnected search path and convergence issues while
using ACR formulation [22]. Hence, a full IVR formulation
of power flow is considered a suitable choice in this work.

C. Contributions and Outline

This paper proposes a SOPF method to calculate the PV
HC of an LVDS as an application based on gPC-CC-OPF,
considering operational uncertainties. As such, computing the
PV HC of a LVDS is determined as a single-shot problem
without the need for any sampling, relaxation, or linearization.
The method is demonstrated using a single-phase equivalent
of a radial network, where load and irradiance are the sources
of uncertainty. To the best of the authors’ knowledge, this is
the first work to propose a SOPF with chance-constraints to
calculate the PV HC of a LVDS without sampling, relaxation
or linearization. To this end, the main contributions of the
paper are:

1) a gPC-CC-OPF-based method to calculate the PV HC of
the single-phase equivalent of a LVDS, considering PV
and load uncertainties, and

2) an empirical method to tune the moment-based refor-
mulation of the probabilistic chance constraints for non-
Gaussian uncertainty.

It is to be noted that the HC calculated in this paper is
the best planning scenario, which is always with three-phase

b1
b2 b4 b6 b7

d1 [3] d5 [1,2,3]

   = Load (d)

   = Bus (b)
   = Line (l)

[1,2,3]   = Phase (c)

l2

l3

l3 l4 l5
l7

b0

d2 [1]
d3 [3]

b3

Fig. 1. Simple representation of a three-phase LV feeder

PV with balanced generation. Hence, it can be solved using
balanced power flow equations.

The remainder of the paper is organized as follows: Sec-
tion II presents a deterministic OPF-based method to determine
the PV HC. Subsequently, Section III presents a stochastic
gPC-CC-OPF-based method to determine the PV HC. Sec-
tion IV presents a numerical illustration where results from
the stochastic HC method are compared with its deterministic
counterpart in a realistic LVDS setting. In Section V, a
case study regarding computational effort and accuracy on
calculated HC in a real LVDS is presented. Lastly, Section VI
concludes the paper.

II. DETERMINISTIC HC

In this section, the mathematical formulation of PV HC
calculation in LVDS is framed using a simple feeder (Fig. 1)
and the π-representation (Fig. 2) of a segment l of such feeder.
The LV substation with a transformer is taken as the source
(or slack) bus, with the active and reactive generation of the
source limited by the transformer capacity. Although each
transformer supplies two to eight LV feeders, this assumption
is justified by the ease of upgrading the transformers compared
to underground cables. Consideration of transformer rating
Srated
t as the limit of the active power of the grid prevents

unrealistic scenarios such as high rated PV at the beginning of
the feeder.

LV distribution systems in Europe consist of a set of radial
LV feeders. The LVDS HC is computed as the sum of the
HC of the individual feeders. The PV HC of a feeder is the
total PV that can be added to that feeder without violating its
operational limits during any realistic operational scenario [2],
[9]. The usual operational limits are minimum voltage Umin,
maximum voltage Umax, maximum voltage unbalance limit,
cable current rating I rated or transformer rating Srated

t . The
operational scenarios are the result of the uncertainty in the
irradiance and load of the consumer, while the planning sce-
narios are due to the uncertainty in the size of the PV, location
of PV and type of PV [3]. The feeder’s HC is computed as
the maximization of the sum of the additional PV capacity a
subset of consumers on the feeder can accommodate, i.e., the
planning scenario with the highest PV, without violating its
operational limits:

HC = max
∑

p∈P
P kWp
p (1)
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Ilij Islij zs
l

Islji Ilji

Ish
lij

ysh
lij

Ish
lji

ysh
ljiUi Uj

Fig. 2. π-model of a branch lij, with series impedance zs
l and from- and

to-side shunt admittances ysh
lij and ysh

lji.

where, P is the set of new PV installations in the feeder,
assuming each LV consumer d has the possibility to have a
PV p of rating P kWp

p .
Fig. 2 shows the simple π-model of the single phase

equivalent of a radial LV feeder segment to describe the
OPF formulation. Buses i ∈ I are the vertices of the graph
representing the feeder and branches l ∈ L are the edges of
the graph. The bus voltage in rectangular coordinates is:

Ui = Ure
i + j Uim

i . (2)

In the deterministic formulation, the voltage magnitude |Ui|
is bounded between Umin

i and Umax
i . The parameters ysh

i , gsh
i

and bsh
i denote the corresponding admittance, conductance and

susceptance at a bus i. The current flowing through a branch l
from bus i to j is:

Ilij = Irelij + j Iimlij (3)

= Ish
lij + Islij (4)

= (Ish,re
lij + Is,re

lij ) + j (Ish,im
lij + Is,im

lij ) (5)

where, lij ∈ T l links a branch l to its from- i and to-bus j.
The union set T l = T l ∪ T l has the reversed branch set
T l which links a branch l from its to-bus j and from-bus i.
The current magnitude |Ilij | is bounded by I rated

l . zs
l denotes

the series impedance of a branch l, where rs
l and xs

l are the
corresponding series resistance and reactance. ysh

lij denotes the
shunt admittance of a branch l at bus i, and gsh

lij and bsh
lij are

the corresponding shunt conductance and susceptance.
Units u ∈ U generalize source, loads, and distributed

generators in the feeder. A tuple ui ∈ T u links a unit u to
a specific bus i. The current flowing from the bus i to the
unit u and complex power are,

Iu = Ireu + j Iimu , (6)
Su = UiI

∗
u (7)

= (Ure
i I

re
u + Uim

i Iimu ) + j (Uim
i Ireu − Ure

i I
im
u ) (8)

= Pu + j Qu. (9)

A unit u is either a load d ∈ Df or a PV device p ∈ P or
a source generator s ∈ S in the slack bus. The set points
of the load are P ref

d and Qref
d and the limits for PV size

are Pmin
p , Pmax

p , Qmin
p and Qmax

p , respectively. The size of the PV
installations P kWp

p is the only variable in PV HC calculations.
The source generator is connected to the feeder’s head and has
maximum real power Pmax

s and maximum imaginary power

b1
b2

b4
b6 b7

d1
d5 

   = Load (d)

   = Bus (b)
   = Line (l)

l2

l3

l3 l4 l5
l7

b0

p4 

d2 d3 

b3

Fig. 3. Single phase representation of an LV feeder with all consumers with
PV for OPF HC calculation

Qmax
s of the order of the transformer rating. As previously

mentioned, these limits are to avoid unrealistic PV scenarios
and should not be confused with transformer loading (Fig. 3).
To consider reverse power flow, the minimum real and imag-
inary powers of the source, Pmin

s and Qmin
s , are considered to

be negative of the maximum limits.
In a deterministic HC problem, the assumption is made that

each consumer can have up to Pmax
p PV capacity. It is assumed

that PV operates at a unity power factor such that Qmin
p = 0 and

Qmax
p = 0. Peak irradiance is indicated by E in kilowatt/m2,

so the actual PV generation is Pp = E · P kWp, neglecting
inverter efficiency, soiling loss, etc. PV systems smaller than 5
kWp are usually connected single-phase, while larger systems
are connected three-phase. However, when solving as a single
phase-equivalent, all PVs are considered balanced, and so is the
load. The variable P kWp

p is assumed to be a continuous variable
and is a relaxed version of the discrete PV size. It is assumed
that all consumers can have only one PV with a rating between
Pmin
p and Pmax

p . Once the maximum PV size is computed, the
individual P kWp

p can be rounded to the lower value of PV size
in PV ratings set (P rt) if such a set is available.

Consequently, the feasible set of the HC formulation as
IVR formulation of the standard deterministic OPF problem
is presented below for more clarity:

OPF HC

Reference Bus Constraint:
Uim
i = 0, ∀i ∈ I ref, (10a)

Source generator Constraint:
−Qmax

s ≤ Qs ≤ Qmax
s , ∀s ∈ S, (10b)

−Pmax
s ≤ Ps ≤ Pmax

s , ∀s ∈ S, (10c)
Ps = Ure

i I
re
s + Uim

i Iims , ∀si ∈ T s, (10d)
Qs = Uim

i Ires − Ure
i I

im
s , ∀si ∈ T s, (10e)

Bus Constraints:∑

lij∈T l

Irelij +
∑

ui∈T u

Ireu + gsh
i U

re
i − bsh

i U
im
i = 0, ∀i ∈ I, (10f)

∑

lij∈T l

Iimlij +
∑

ui∈T u

Iimu + gsh
i U

im
i + bsh

i U
re
i = 0, ∀i ∈ I, (10g)

(Umin
i )2 ≤ (Ure

i )2 + (Uim
i )2 ≤ (Umax

i )2, ∀i ∈ I, (10h)
Branch Constraints:
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Ure
j = Ure

i − rs
l I

s,re
lij + xs

lI
s,im
lij , ∀lij ∈ T l ,(10i)

Uim
j = Uim

i − rs
l I

s,im
lij − x

s
lI

s,re
lij , ∀lij ∈ T l ,(10j)

Irelij = gsh
lijU

re
i − bsh

lijU
im
i + Is,re

lij , ∀lij ∈ T l,(10k)

Iimlij = gsh
lijU

im
i + bsh

lijU
re
i + Is,im

lij , ∀lij ∈ T l, (10l)

(Irelij)
2 + (Iimlij)

2 ≤ (I rated
l )2, ∀lij ∈ T l,(10m)

Demand Constraints:
Ure
i I

re
d + Uim

i Iimd = P ref
d , ∀di ∈ T d, (10n)

Uim
i Ired − Ure

i I
im
d = Qref

d , ∀di ∈ T d, (10o)
PV Constraints:
Pp = Ure

i I
re
p + Uim

i Iimp , ∀pi ∈ T p, (10p)

Qp = Uim
i Irep − Ure

i I
im
p , ∀pi ∈ T p, (10q)

Pp = EP kWp
p , ∀p ∈ P, (10r)

0 ≤ P kWp
p ≤ Pmax

p , ∀p ∈ P, (10s)
Qp = 0, ∀p ∈ P. (10t)

The objective of the optimization is to maximize the total PV
capacity as given in (1). The uncertainties in both load and
irradiance are neglected in this formulation. The final hosting
capacity is the sum of the individual PV P kWp

p . The output is
the highest possible PV that the feeder can accommodate under
network constraints for a particular snapshot of the operational
scenarios. For PV HC with equal PV, the PV constraints in
(10p) – (10t) can be modified to keep P kWp equal among the
p ∈ P . That means the |P| number of constraints for (10r)-
(10t) is replaced by single constraints in (11c)-(11e)

OPF HC with equal PV

Constraints (10a) − (10o)
P = Ure

i I
re
p + Uim

i Iimp ∀pi ∈ T p, (11a)

Q = Uim
i Irep − Ure

i I
im
p ∀pi ∈ T p, (11b)

P = EP kWp, (11c)
0 ≤ P kWp ≤ Pmax, (11d)
Q = 0. (11e)

III. STOCHASTIC OPF HC
The formulation presented in Section II assumes determinis-

tic load and irradiance set-points. However, in reality, these set
points are random and time dependent. All variables in (10)
become stochastic variables for each time instance t under
consideration. In [3], overvoltage was shown to be the most
limiting factor for the calculation of PV HC. Furthermore,
after a Probabilistic Power Flow (PPF) based evaluation, the
maximum probability of overvoltage was deemed as a suitable
index to calculate PV HC in an LVDS. Instead of running
the OPF for HC calculation for all time period t ∈ T , the
search space is reduced by only investigating the time-point τ
where the probability that the maximum voltage in the feeder is
higher than Umax is highest, i.e., pov

t = P(max(Ui,t) > Umax)

is the highest. This instance is found a priori by using PPF
from [4] for all timestamps, assuming high PV penetration.
The remainder of the CC-OPF formulation is described for
single-period optimization for τ time where pov

τ = max(pov
t ).

Stochastic variables are captured by a real-valued finite-
variance stochastic germ ω = [ω1, ..., ωN ]T with N ∈ N, and
corresponding set of possible realizations Ω ⊂ RN . The first
(N-1) stochastic variables for the selected time τ are due to
the uncertainties in load. The last variable ωN describes the
solar irradiance E.

The gPC-CC-OPF used in this paper for stochastic HC is
based on the Galerkin projection of the uncertain variables
in the power flow equations. The projection is made in the
form of the inner products of orthogonal polynomials for each
uncertain variable considered. The gPC converts the infinite-
dimensional space of the continuous uncertainty into a finite-
dimensional vector K based on the orthogonal polynomi-
als [23], [24]. The value of dimension K depends on the
number of uncertainty variables considered and polynomial
degree considered, i.e., for second degree polynomials with
N sources of uncertainty, the dimension of K is given by
(2+N)!
2!N ! . The gPC based reformulation of the stochastic problem

is mainly based on the properties of orthogonal polynomials
summarized below, and interested readers are referred to [23],
[24] for details:

a) The continuous uncertain variable with known probability
density function can be accurately represented by degree
one orthogonal polynomials, i.e., with two coefficients.

b) The tensor product of univariate orthogonal polynomials
can be used to create multivariate orthogonal polynomials
[Φk]k∈K that act as the base for all variables under
consideration.

c) The inner product of the orthogonal polynomial bases
(also known as expectation operation) can be precom-
puted and is given as:

〈Φl,Φk〉 = E[Φl,Φk] =γlδlk, ∀l, k ∈ K ⊆ N,
δlk = 1 ∀l 6= k,

δlk = 0 ∀l = k (12)

where, γl is a positive scalar that can be precomputed and
δlk is the Kronecker delta.

d) The first coefficient of the polynomial representation of
the variable is the mean of that variable, and the square of
the remaining coefficients is the variance of that variable.
The approximate polynomial representation of a random
variable x is:

x̂ =
∑

k∈K

xkΦk, (13)

where, xk is the coefficient of Φk, the orthogonal poly-
nomial basis. The approximated mean and variance of x
are as follows:

E[x̂] = x0, (14)

V[x̂] =
∑

k∈K\{0}

〈Φk,Φk〉x2k. (15)
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The propagation of the uncertainty from the reference load
and generation to the nodal voltages and current involves
mainly two operations, summation and multiplication. For
three approximated random variables x̂, ŷ and ẑ which are
defined on the same orthogonal basis, the Galerkin projection
of the operations are as follows:

ẑ = x̂ + ŷ
gp→ zk = xk + yk, ∀k ∈ K, (16)

ẑ = x̂ · ŷ gp→ zk =
∑

k1,k2∈K

M(xk1 · yk2), ∀k ∈ K, (17)

where M denotes the multiplication tensor,

M =
〈Φk1 ,Φk2 ,Φk〉
〈Φk,Φk〉

, (18)

and can be computed ahead of time.
In a stochastic context, enforcing deterministic bounds on

continuous random variables is not possible. Alternatively,
chance constraints ensure that the probability of a random
variable x violating a deterministic bound xmin or xmax is below
a certain stochastic bound ε:

P(x ≥ xmin) ≥ (1− ε) or P(x ≤ xmax) ≥ (1− ε). (19)

The choice of ε depends upon the nature of the solution
required. If ε=0, the solution obtained is distributionally robust,
which could lead to underestimating the actual HC of the
network [2]. This can be reformulated as a moment-based
equation [19], [20],

xmin ≤ E(x)± λ(ε)
√
V(x) ≤ xmax, (20)

where λ(ε) > 0 is chosen based on knowledge of the random
variable. In [19] and [20], λ(ε) was taken assuming the output
as Gaussian for all nodes and lines, i.e., λ(ε) = 1.65 if ε =
0.05. In this paper, an empirical tuning method is used where
instead of taking the same λ(ε) for all limits, each node is
assigned a separate moment-based reformulation factor λi(εv).
Similarly, each line has a particular λlij(εi).

The following auxiliary variables are used in this formula-
tion.

1) squared bus voltage magnitude: Wi = (Ure
i )2 + (Uim

i )2,
2) squared branch current magnitude: Jlij = (Irelij)

2 +(Iimlij)
2,

3) active source power: Ps = Ure
i I

re
s + Uim

i Iims , and,
4) reactive source power: Qs = Uim

i Ires − Ure
i I

im
s .

The reason was to eliminate the fourth-order tensor product
in gPC-CC-OPF formulation on IVR formulation space. In-
terested readers are referred to [20] on how the fourth-order
permutation of K presented in [25] is reduced to second-order
permutations by the use of these auxiliary variables.

Finally, the feasible set of the IVR formulation of the gPC-
CC-OPF for chance constrained PV HC is:

gPC-CC-OPF HC

Reference Bus Constraints — i ∈ I ref :

Ure
i,k = 0, ∀k ∈ K0, (21a)

Uim
i,k = 0, ∀k ∈ K, (22)

Source generator Constraints — si ∈ T s
∑

k1,k2∈K

M(Ure
i,k1 I

re
s,k2 + Uim

i,k1 I
im
s,k2) = Ps,k, ∀k ∈ K, (23a)

∑

k1,k2∈K

M(Uim
i,k1 I

re
s,k2 − Ure

i,k1 I
im
s,k2) = Qs,k, ∀k ∈ K, (24)

−Pmax
s ≤ E(Ps)± λ(ε)

√
V(Ps) ≤ Pmax

s , (25a)

−Qmax
s ≤ E(Qs)± λ(ε)

√
V(Qs) ≤ Qmax

s , (25b)
Bus Constraints — ∀i ∈ I :∑

lij∈T l

Irelij,k +
∑

ui∈T u

Ireu,k + gsh
i U

re
i,k − bsh

i U
im
i,k = 0, ∀k ∈ K, (25c)

∑

lij∈T l

Iimlij,k +
∑

ui∈T u

Iimu,k + gsh
i U

im
i,k + bsh

i U
re
i,k = 0, ∀k ∈ K, (25d)

∑

k1,k2∈K

M(Ure
i,k1U

re
i,k2 + Uim

i,k1U
im
i,k2) = Wi,k, ∀k ∈ K, (25e)

(Umin
i )2 ≤ E(Wi)± λi(εv)

√
V(Wi) ≤ (Umax

i )2, (25f)

From Branch Constraints — ∀lij ∈ T l :

Ure
j,k = Ure

i,k − rs
l I

s,re
lij,k + xs

lI
s,im
lij,k, ∀k ∈ K, (25g)

Uim
j,k = Uim

i,k − rs
l I

s,im
lij,k − x

s
lI

s,re
lij,k, ∀k ∈ K, (25h)

Branch Constraints — ∀lij ∈ T l :

Irelij,k = gsh
lijU

re
i,k − bsh

lijU
im
i,k + Is,re

lij,k, ∀k ∈ K, (25i)

Iimlij,k = gsh
lijU

im
i,k + bsh

lijU
re
i,k + Is,im

lij,k, ∀k ∈ K, (25j)
∑

k1,k2∈K

M(Irelij,k1 I
re
lij,k2 + Iimlij,k1 I

im
lij,k2) = Jlij,k, ∀k ∈ K, (25k)

E(Jlij)± λlij(εi)

√
V(Jlij) ≤ (I rated

l )2, (25l)

Demand Constraints — ∀di ∈ T d :∑

k1,k2∈K

M(Ure
i,k1 I

re
d,k2 + Uim

i,k1 I
im
d,k2) = P ref

d,k, ∀k ∈ K, (25m)

∑

k1,k2∈K

M(Uim
i,k1 I

re
d,k2 − Ure

i,k1 I
im
d,k2) = Qref

d,k, ∀k ∈ K, (25n)

PV Constraints — ∀pi ∈ T p :∑

k1,k2∈K

M(Ure
i,k1 I

re
p,k2 + Uim

i,k1 I
im
p,k2) = P kWp

p Eref
k , ∀k ∈ K, (25o)

∑

k1,k2∈K

M(Uim
i,k1 I

re
p,k2 − Ure

i,k1 I
im
p,k2) = 0, ∀k ∈ K, (25p)

0 ≤ P kWp
p ≤ Pmax

p . (25q)

where M denotes the multiplication tensor for the Galerkin
projection of uncertainties, and X(·) = [X(·,k)]k∈K is employed
for convenience to represent the vector of the coefficient
variable of X(·). Finally, an objective is introduced to maximize
the total PV size :

max
∑

p∈P
P kWp
p (26)
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IV. NUMERICAL ILLUSTRATION

In this section, the application of OPF and CC-OPF for
HC calculation in a test feeder is shown. Then, the method is
used to compute the PV HC of a set of actual LVDS feeders
in [26] in Section V. The aim is to establish the method
and discuss the limitations and applications of this tool. The
code is available on github1 as an independent project using
StochasticPowerModels.jl, along with the feederwise
data of the network in [26].

All the simulations in this paper were done on a PC with a
2.11 GHz Intel i7-8650U CPU processor with 16 GB memory,
using JULIA 1.6.5. No parallelization of any sort was used
in all of the calculations. The non-linear Ipopt solver v0.7.0 is
used for the calculations.

A. Test Feeder
A simplified test feeder, as shown in Fig. 3, is considered

for a detailed study. The feeder has seven consumers, with
each consumer having the possibility to have a PV installation
between 0-15 kWp. The single time-period optimization is
done on the timestamp with the maximum probability of
overvoltage on a typical high irradiance spring day. The time-
stamp chosen was 15:00-15:15 hrs as it was the time period
with the highest pov

t in a priori PPF with all consumers
having 10 kWp. The PV generation was considered perfectly
correlated as the span of the feeder is 300 meters only. The
consumers were classified into four categories based on their
annual consumption and connected kVA. The consumers in
the same category were considered to be linearly correlated.
All the load and PV distributions obtained from the historical
profiles were fitted as a beta distribution [3], [27]. In Table I,
the details of the uncertainty terms considered for the test
case are given. In this work, all consumers in the same group
are assumed to be perfectly correlated. However, if available,
the correlation factor between the consumers can be readily
endorsed in the model. The deterministic calculations were
done assuming the maximum irradiance and minimal load of
0.1 kW for all consumers.

B. Deterministic OPF HC
This section compares the result obtained from OPF HC

with the deterministic scenario based HC method. In the
scenario based method, several planning scenarios were taken,
and the best planning scenario within the operational limits
was considered to be the PV HC of that feeder. The main
drawback of this method is the number of scenarios to be

1https://github.com/arpkoirala/HostingCapacityLVDS

TABLE I. UNCERTAINTY PDF FOR LOAD AND IRRADIANCE FOR τ .

ω Distribution CONSUMER ANNUAL KWH CONNECTION KW
1 B([0, 3.98], 2.11, 20.90) 1,2,4,7 1300-1612 4.6-5.75
2 B([0, 5.7], 1.17, 2.54) 5 5308 17.32
3 B([0, 5.9], 1.29, 5.34) 3 1226 4.6
4 B([0, 5.38], 1.75, 12.08) 6 2022 4.6
5 B([748, 799], 0.24, 0.22) Irradiance - -
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0
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Fig. 4. Histogram of feasible and infeasible scenarios compared with OPF-
HC
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OPF-HC: 50.4 kWp
Scenario-based: 50 kWp
CC-OPF HC: 52.4 kWp

Fig. 5. PV HC scenarios obtained from OPF and Scenario based method
(PV HC for each scenario is given in the legend)

considered. For this test case, for seven consumers with the
possibility of having PV from 0-15 kWp in steps of 1 kWp
the number of scenarios is 268 435 456 (167). These scenarios
are only due to PV size, as other uncertainties, e.g., PV type
and connected phase, are not even considered. A brute force
deterministic evaluation of all these scenarios might take a
few months in computation time, if not years. If the scenario
based method is stochastic as proposed in [3], the time for
computation will increase by multiple orders. For this practical
reason, the OPF HC and deterministic scenario based HC
methods are compared, assuming that a similar relationship
will hold between stochastic OPF HC and stochastic scenario
based HC methods.

A histogram is plotted for feasible and infeasible PV sce-
narios using only two million randomly selected possible sce-
narios (only 3% of the possible scenarios) using deterministic
limits along with the OPF HC (Fig. 4). The time taken by the
OPF HC was 0.241 sec, while it was ≈ 2 days for deterministic
scenario based HC (Table II). The OPF HC calculated was
50.4 kWp, while the scenario-based HC was 50 kWp, the
closest possible integer value below OPF-HC. There are 41 621
scenarios where the sum of PV installed is equal to 50 kWp,
of which 3 252 were feasible combinations (≈8% of total
scenarios with 50 kWp). In Fig. 4, all the feasible solutions
are less than (on the left-hand side) the OPF HC. While the
unfeasible solutions are on both sides of the OPF HC. The OPF
HC is hence the theoretically possible upper limit as there are
unfeasible scenarios where the total PV is less than this limit
when the location of PV installations changes.

https://github.com/arpkoirala/HostingCapacityLVDS
https://github.com/arpkoirala/HostingCapacityLVDS
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An iterative algorithm was applied for scenario reduction
where the scenarios with a sum of PV below a feasible scenario
were considered to be feasible automatically. For e.g., if the
scenario with 30 kWp PV is feasible, all the PV scenarios
below that value were not evaluated. Still 3 000 scenarios were
required for the test case to reach the accuracy of the OPF HC
method. The computation time of the method using scenario
reduction was still 20 mins for deterministic scenario based HC
calculation, compared to 0.241 sec for OPF HC calculation.
Another possible scenario reduction method is to assume all
consumers to have equal PV as proposed in [18]. In such case,
the maximum number of PV deployment scenarios required is
25, if the maximum PV is considered to be 15 kWp in a step of
0.1 kWp. Using this method, the deterministic HC calculated
is 10% less than obtained from the OPF HC method, while
the computation time is ten times the time needed for the OPF
HC method.

The scenario reduction schemes for operational random
variables (load and irradiance samples) was dealt with in
detail in [2], where 1 000 samples from Sobol or Halton
sequences were found to be enough for the probability of
congestion calculation. Hence, the computation time for MC
based stochastic HC was calculated considering those quasi
Monte Carlo schemes and hence no other scenario reductions
were considered.

C. gPC-CC-OPF PV HC assuming Gaussian output
In Fig. 5, the OPF HC method is compared with the gPC-

CC-OPF HC method. The gPC-CC-OPF considers that the
voltage or current violation probability is not strict, but can
be risk based, i.e., can be violated for some scenarios, which
is denoted by the stochastic limit ε. The gPC-CC-OPF HC
of the test network is calculated to be 52.4 kWp, 4% more
than the result obtained with the deterministic limit. The
computation time for gPC-CC-OPF HC method was 4.04 sec,
almost 16 times more than the OPF HC method. In Table II,
the computation time for all methods is given.

The PV size of each consumer is a variable in the above
calculation. The advantage is that each PV installed can have
different constraints for PV size; for example, all consumers
can have equal PV. This means that the proposed CC-OPF HC
calculations can be used when there is limited knowledge of
the scenario or to evaluate different fairness schemes in the

TABLE II. COMPUTATION TIME OF SCENARIO BASED MC, OPF HC,
AND GPC-CC-OPF HC FOR TEST FEEDER (7 CONSUMERS, EACH

CONSUMER CAN GET 0-15 KWP IN THE STEP OF 1 KWH)

HC Method No of power flow computation HC
Scenario based (Det., complete set) 68 435 456 ≈190 days∗ -
Scenario based (Det., 3% scenarios) 2 million ≈2 days 50 kWp
Reduced Scenario (Iterative method) 3 000 ≈20 mins 50 kWp
Scenario based (MC, 1000 samples) 68 435 456 000 ≈520 yrs∗∗ -

Scenario reduced (MC, 1000 samples) 3 000 000 ≈1.5 day∗∗ -
OPF HC - 0.241 sec 50.4 kWp

gPC-CC-OPF HC - 4.04 sec 52.4 kWp
gPC-CC-OPF HC (With equal PV) - 0.51 sec 44.8 kWp

∗ scaled from time for 3% of the cases
∗∗ scaled from time for OPF with 1 sample

1 2 3 4 5 6 7
0

5

10

15

Device Id

PV
si

ze
[k

W
p]

S1: 52.4 kWp
S2: 44.8 kWp
S3: 47.4 kWp
S4: 47.4 kWp

Fig. 6. PV HC scenarios obtained from gPC-CC-OPF with different PV size
limits with HC in the legend

feeder. The individual limits of the consumer PV size is an
input for the method. In Fig. 6, four different scenarios of PV
size limits are depicted, and the respective gPC-CC-OPF HC
are as follows:
• S1: The PV installations of consumers are in be-

tween 0 to 15 kWp. The corresponding CC-OPF HC is
52.5 kWp.

• S2: The PV installations of consumers are equal, and
between 0 to 15 kWp. The corresponding CC-OPF HC
of the test feeder is 44.8 kWp.

• S3: Consumer 1 and 2 in the test feeder can have PV in-
stallations between 0 and 10 kWp, consumer 3 has a fixed
PV installation of 5 kWp, and the remaining consumer
can have a PV installation between 0 and 15 kWp. The
corresponding CC-OPF HC of the test feeder is 47.4 kWp.

• S4: All consumers have PV installations between
5 and 10 kWp. The corresponding CC-OPF HC is
47.4 kWp.

D. Tuning of moment-based chance-constraints

One of the limitations of gPC-CC-OPF is that the moment-
based reformulation in (20), wherein we assumed the λi(εv)
to be based on the Gaussian distribution where its value is
1.65 for εv = 0.05 [19], [20]. But the input we assume is
not Gaussian, and the non-Gaussian uncertainties propagated
through non-linear power flow equations resulting in an output
that is certainly not Gaussian. In Fig. 7, two distributions are
taken, i.e., Normal and Beta, with the same expectation and
variance. The figure shows that the Beta distribution has a more
skewed tail compared to the Normal distribution. The cyan
region corresponds to the area for εv = 0.05 for the Normal
PDF, which is exact. For the Beta distribution, the area covered
by the PDF after the point given by Gaussian reformulation is
higher than 0.05 (the space between the two PDFs). For the
moment-based reformulation of a such probability distribution,
the value of λi(εv) needs to be increased to get εv = 0.05.

An iterative method is proposed to correct the value of
λi(ε

v). In the first run of gPC-CC-OPF, the dual variable is
recorded for the Wi constraint in (25f). The λi(εv) is tuned
only for the bus with a binding constraint, i.e., the constraints
with a non-zero dual variable. For the test case, this is bus 5.
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UmaxE(Ui)

εv = 0.05λi(ε
v)
√
V (Ui)

x

f(x)
Beta (5, 5)

Normal(0.5, 0.15)

Fig. 7. Moment based reformulation of stochastic limits. The cyan region is
the area where εv = 0.05 for Normal PDF
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Fig. 8. Probability of voltage crossing 1.05 pu in each node

The voltage is sampled at that bus and based on the 95%
quantile of Ui, a new λi(ε

v) is decided. The second run
of gPC-CC-OPF is done after the tuning of moment-based
formulations. The empirical tuning method is proposed, where
a new λi(ε

v) is assigned to the node with binding chance
constraints to reduce the discrepancy created due to assuming
the output as Gaussian.

a) If 95% quantile of Ui > 1.001Umax: λi(εv)= 2.05
b) If 95% quantile of Ui > 1.0001Umax: λi(εv) = 1.85
c) If 95% quantile of Ui < 0.99Umax: λi(εv)= 1.05
d) If 95% quantile of Ui < 0.099Umax: λi(εv)= 1.45
After tuning, the probability P(Ui < Umax) ≥ 0.95 is

satisfied. The new computation time is 9.26 sec, which is 2.3
times the computation time required for the original gPC-
CC-OPF problem. The gPC-CC-OPF is solved twice, and the
remaining time is due to the sampling of the voltage, finding
quantiles and tuning λ. The initial and after-tuning probability
of overvoltage for each node is shown in Fig. 8. The new
HC calculated is 52.7 kWp which is 0.38% higher than before
tuning. As the name suggests, the tuning is done to improve
the accuracy of the gPC-CC-OPF HC method and is a good-
to-have feature to the original solution.

V. CASE STUDY: EUROPEAN TEST NETWORK

In this section, the OPF HC method is compared with
gPC-CC-OPF HC calculation with tuning for the large-scale
network presented in [26] (Fig. 9).

The OPF HC is calculated assuming maximum irradiance
in the day and a load of 0.1 kW for all consumers. The
analysis is done feederwise instead of the whole network at
once. For gPC-CC-OPF HC computation, a clustering was

Fig. 9. Non-synthetic European Low Voltage Distribution Network

performed to identify similar loads according to the annual
energy consumption, and the loads in the same clusters are
assumed to be perfectly correlated. The load of each type of
consumer is fitted to a Beta distribution per 15-minute time
period for a typical spring day. Similarly, the irradiance of
the typical spring day is fitted to a Beta distribution using
historical measurements in EnergyVille premises of Genk. It
should be noted that a Beta distribution is taken in this study
as it is mostly used to represent both irradiance and consumer
load at household level [27]. However, the method is valid if
the input uncertainties are represented by any other standard
distribution, such as Normal and Uniform distributions, which
are usually referred to under Askey schemes [23], [28]. For
details on supported distributions, readers are pointed to the
book Hypergeometric Orthogonal Polynomials and their q-
Analagous by Koekoek, Lesky & Swarttouw [29], which has
the current extension of the Askey scheme. The reactive power
is considered to be 5% of the active power for all loads.

Out of 147 feeders with consumers in the network, gPC-
CC-OPF does not converge to an optimum value for 8 feeders
within 500 secs or 3000 iterations. The results shown are based
on 139 feeders where the OPF HC and gPC-CC-OPF HC
calculation both converged to an optimum value. For gPC-CC-
OPF HC, the time-stamp of maximum congestion probability
is calculated beforehand using probabilistic power flow when
all consumers have 10 kWp PV installed. Single time period
gPC-CC-OPF solutions with tuning are obtained for each
feeder with uncertainties in PV generation and consumer load.

A. OPF HC vs gPC-CC-OPF HC in the actual network

In Fig. 10, the mismatch percentage of the HC for 139
feeders is shown where,

mismatch =
(OPF HC− gPC-CC-OPF HC)

gPC-CC-OPF HC
. (27)

The histogram shows that the deterministic OPF HC is below
the HC of CC-OPF HC, concretely on 126 feeders. The lower
value from OPF HC is attributed to the assumption of a
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Fig. 10. Histogram of mismatch between OPF HC and gPC-CC-OPF HC
normalized by gPC-CC-OPF HC in percentage. The number of feeders with
no mismatch or positive mismatch are plotted as dot.
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Fig. 11. Boxplot of log10 of the computation time for gPC-CC-OPF HC in
real LV feeders with respect to the number of uncertainties considered. The
numbers in the red brackets represent the number of LV feeders whose HC
solution did not converge in 500 seconds or 3000 iterations.

constant load of all consumers and peak irradiance, which is
only one snapshot of all possible operational scenarios due
to load and irradiance. It shows that the assumption of low
load and high irradiance gives us the solution in a more
distributionally robust space (worst-case).

The computation time for gPC-CC-OPF HC was compared
as a function of the number of nodes and uncertainty sources.
The computation time of gPC-CC-OPF HC for 139 LVDS
feeders with respect to the number of sources of uncertainty is
shown in Fig. 11. The sources of uncertainty in the LV feeders
range from two to eleven. The computation time increases
with the number of uncertainties. Moreover, the number of
feeders where a solution is not obtained within 500 sec and
3000 iterations is high (three out of five feeders) for the
case with ten uncertainties. In Fig. 12, it is seen that the
number of nodes in the LVDS feeder also influences the
computation time. However, the feeders with fewer nodes can
also have higher computation time if the number of sources
of uncertainty is higher. In this study, most feeders had less
than ten uncertainty sources. Furthermore, the stochastic HC
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Fig. 12. Log10 of computational time for gPC-CC-OPF HC in real LV
feeders with respect to the number of nodes in the LV. The red dots represent
the HC solutions not converged in 500 seconds or 3000 iterations.

of 90% of the LV feeders could be computed within 100 secs.
It can be fairly concluded that the gPC-CC-OPF method still
needs some algorithmic improvement to reduce computational
time for the system with a higher number of uncertainties.

VI. CONCLUSION

This paper introduces a SOPF method for stochastic HC
calculation using gPC-CC-OPF. This method uses stochastic
load and irradiance input for a peak summer day to get the best
PV placement scenario for low voltage distribution feeders.
Stochastic chance constraints in the operational variables, i.e.,
nodal voltage and branch current, are considered. The use of
gPC-CC-OPF enables us to solve the problem as a single-shot
problem without any linearization, sampling, or relaxation.
This method gives the stochastic HC in a few seconds while
solving a similar problem using MC-based methods would
take a few days. The comparison between HC obtained from
deterministic OPF and stochastic gPC-CC-OPF in actual LVDS
feeders shows that the OPF HC calculated are an underestimate
of the CC-OPF HC. Finally, an iterative empirical tuning
approach for the moment-based reformulation of the chance
constraint is proposed to obtain a correct chance constraint
limit when the inputs are not Gaussian distributed and the
distribution of nodal voltage and current are unknown. The
method is made openly available as a branch of STOCHAS-
TICPOWERMODELS.JL along with the network data and the
uncertainties definitions.

For a planning application, such as the calculation of the PV
HC, a single-time period optimization for a balanced system is
sufficient. However, for computing the PV-battery systems and
electric vehicles, a multi-time period SOPF is recommended.
Similarly, if the interest is in obtaining the HC of single-phase
PV systems, an unbalanced SOPF is recommended. Hence, an
unbalanced, multi-period SOPF is identified as future work.
Furthermore, improvement of the computation time of the
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SOPF using gPC by leveraging the sparsity of the coefficients
will be the future work.
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