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Abstract—The distribution system reconfiguration problem,
which involves optimizing the topology of a power distribution
network by determining switch-states, is a challenging combina-
torial optimization problem with a large, nonconvex search space.
For low voltage (LV) distribution networks, a solid comparison of
various alternative optimization methods is lacking in literature.
This paper aims to address this gap by comparing two different
reconfiguration methods: a metaheuristic optimization approach
based on a genetic algorithm formulation, and a mathematical
optimization approach based on a second order cone relaxation of
the exact formulation. Additionally, the significance of exploiting
the low meshedness in LV-networks, by decoupling the network
into independently reconfigurable subnetworks, is highlighted.
The comparative analysis is done for a real European LV network
which decouples into 164 subnetworks of varying combinatorial
size. In addition to this, two medium voltage (MV) networks
are also included in the comparison. The results robustly show
the computational advantage of the genetic algorithm approach
over the relaxed second order cone approach for networks with
large combinatorial sizes, though the relaxed approach has the
advantage of providing a lower bound to the global optimum.

Index Terms—reconfiguration, low voltage distribution grids,
method comparison, metaheuristic optimization, mathematical
optimization

I. INTRODUCTION

Power distribution networks typically have a meshed struc-
ture, though they generally are operated in radial configura-
tion by opening and closing switches. Changing the state of
these switches is known as distribution system reconfiguration
(DSR). Reconfiguration is done to achieve multiple objectives
such as reducing power losses, limiting network congestions,
increasing hosting capacity, or enhancing voltage stability.

In European low voltage (LV) networks, considered in
this paper, mainly manually controlled switches are present,
hence network configurations are set for longer periods of
time, referred to as static reconfiguration. However, despite
its’ potential to improve the usage of grid assets, numerous
contacts with DSO’s indicate that static reconfiguration is
currently either little used or applied through suboptimal
rules of thumb. Especially with the ongoing energy transition,
resulting in an increased and more variable electricity demand
and generation, it is increasingly important to optimally use
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existing infrastructure. Hence the development and applica-
tion of optimal reconfiguration methods for LV distribution
networks are indispensable.

A. Related literature

For medium voltage (MV) grids, reconfiguration is more
common, and configuration optimization methods have been
well-explored. DSR, with it’s large scale, combinatorial nature,
and nonlinear constraints, falls into the category of mixed-
integer nonlinear programming (MINLP), and is therefore very
challenging to solve. Since 1975, researchers have developed
mathematical optimization, heuristic, and metaheuristic meth-
ods to tackle DSR [1].

Firstly, mathematical programming approaches usually ob-
tain good quality solutions, often global optima, though gener-
ally at the cost of a high computation effort and time [1]. Exact
formulations of the problem are nonlinear, hence they can
not guarantee global optimality and often result in intractable
computation times [2]. To alleviate this issue, the problem
can be relaxed into convex problems such as the formulations
proposed in [2] and [3]. The resulting solutions are often
exact or at least can inform us on a lower bound to the
objective. At the transmission level, the same relaxations have
been successfully applied to the related transmission network
expansion problem, also an MINLP, and similar conclusions
were reached [4].

Secondly, heuristic methods are problem-specific and based
on expert’s experience and rules of thumb. They can be much
faster than mathematical approaches, though they are greedy
and can get stuck in local optima [1]. Early examples include
the DISTOP and branch exchange method [5] [6], more recent
heuristics to address DSR were proposed in [7] and [8].

Finally, metaheuristic methods are generic problem-solving
frameworks inspired by physical or biological phenomena.
Examples include genetic algorithms [9] [10], and particle
swarm optimization [11]. Metaheuristic methods usually pro-
vide good-quality solutions through their explorative search,
though no global optimality guarantee can be given. They have
a higher computation cost than heuristics, but are often more
tractable than mathematical approaches.

In summary, for MV networks, the general finding has
been that mathematical programming methods, through re-
laxed formulations, can find optimal solutions to the DSR
problem, or at least may provide a lower bound to the solution.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



However they can be time consuming especially for large
networks. Metaheuristic methods on the other hand, require
shorter computation time for large networks, while similarly
obtaining good-quality results, though no global optimality
guarantees can be given.

However, directly applying these conclusions for MV DSR
on LV grids ignores the structural differences between LV and
MV: LV networks generally contain many more feeders and
are less meshed than MV networks, they have higher R/X-
ratios, and their loads are more variable. Because of these
differences, conclusions regarding the best DSR methods are
not necessarily valid for LV grids.

B. Contributions and organization of the paper

The key contributions of the paper are:
• Providing a performance comparison between two DSR

methods, a metaheuristic genetic algorithm (GA) ap-
proach with a mathematical second order cone (SOC)
relaxation, to solve a real European LV test case. To the
best of our knowlegde, such a comparison is missing for
LV distribution nets.

• Exploiting typical LV network structure for reconfigura-
tion: LV grids are less meshed and can be decoupled into
independently reconfigurable subnetworks, significantly
reducing the computational time of reconfiguration re-
gardless of the chosen method.

• Categorization of the subnetworks by means of their
combinatorial size, i.e. the number of possible radial
configurations in the network, allows to meaningfully
compare both approaches for different problem sizes.

The paper’s structure is as follows: Section II details
the reconfiguration problem; Section III presents both re-
configuration methods; Section IV explains how LV specific
characteristics can be employed to improve DSR solution
methods; Section V applies and compares the metaheuristic
and mathematical method on a real LV network and two MV
networks; and finally, Section VI concludes the study.

II. DISTRIBUTION SYSTEM RECONFIGURATION: EXACT
PROBLEM FORMULATION

The reconfiguration problem considered in this paper aims
to optimize the on/off states, αij , of all network switches to
minimize network losses. Additionally, only radial network
configurations are allowed, and voltage and current limits are
imposed to prevent network congestion.

The exact formulation is described by Model 1. At the top,
a description of input data and variables is given. I and L
represent the set of buses and the set of directed lines in
the network. I ref ⊂ I is the set of reference buses, which
in this case corresponds to the buses located at each feeder-
head. Lsw ⊂ L represents the set of lines that include a switch.
The objective (1.1) minimizes the total real power losses in the
network. Constraints (1.2)-(1.4) ensure the power flow equa-
tions, expressed by a branch flow model (BFM) formulation.
They consist of: power balance constraints (1.2), Ohm’s law
(1.3), and the power definition (1.4). Demand constraint (1.5)

Model 1: Exact DSR problem formulation (AC)

Inputs:
⟨I, I ref,L,Lsw⟩ - the power network
zij ⇔ yij - impedance of line ij

sdi - demands at bus i

U ref
i , Umax

i , Umin
i - voltage reference and limits at bus i

I rated
ij - current rating of line ij

Variables:
Sij - power flow on line ij

si = pi + jqi - power injection at bus i

Ui - voltage at bus i

Iij - current through line ij

αij ∈ {0, 1} - switch state of line ij

βij , βji ∈ {0, 1} - auxiliary variables at line ij

Minimal Loss Objective:

min
∑
i∈I

pi (1.1)

Power Flow Constraints:

si =
∑

j:ij∈L
αijSij−

∑
h:hi∈L

αhi(Shi−zhi|Ihi|2), ∀i ∈ I, (1.2)

Iij = αijyij(Ui − Uj), ∀ij ∈ L, (1.3)
Sij = UiI

∗
ij , ∀ij ∈ L, (1.4)

Demand Constraint:
si = −sdi , ∀i ∈ I \ I ref, (1.5)
Voltage Constraints:
Ui = U ref

i , ∀i ∈ I ref, (1.6)

Umin
i ≤ |Ui| ≤ Umax

i , ∀i ∈ I \ I ref, (1.7)
Current Constraint:
|Iij | ≤ I rated

ij , ∀ij ∈ L, (1.8)

Radiality Constraints:
βij + βji = αij , ∀ij ∈ L, (1.9)∑
j:ij∈L

βij = 1, ∀i ∈ I \ I ref, (1.10)

βij = 0, ∀i ∈ I ref,∀j : ij ∈ L, (1.11)
αij = 1, ∀ij ∈ L \ Lsw (1.12)

fixes the power injection to the given demand, such that only
the power injection variables at the reference buses remain
unknown. Constraint (1.6) sets the voltage at the reference
buses to a preset reference value. Constraints (1.7) and (1.8)
ensure reasonable voltage and current magnitude limits, these
constraints are also referred to as the congestion constraints.
Finally, radiality is enforced through radiality equations (1.9)-
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(1.12). Switch state αij indicates the connectedness of line
ij. Auxiliary variables βij and βji, indicate the parent-child
relationship; if i(j) is the parent of j(i) then βij(βji) = 1.
Equation (1.9) describes that there is only a parent-child
relationship if the line is connected, and equations (1.10) and
(1.11) indicate that each bus has exactly one parent, except
the reference nodes which have none.

Some related notations are introduced as follows:
• A network configuration ααα = [αij ]ij∈L with feasible, i.e.

radial, configuration space A

A = {ααα | ααα satisfying (1.9) − (1.12)} (2)

• Network losses Ploss, i.e. the objective of the optimiza-
tion problem (1.1) satisfying the power flow constraints:

Ploss(ααα) =
∑
i∈I

pi, satisfying (1.2) − (1.6) for ααα (3)

We can directly provide Model 1 to an MINLP solver.
While this exact AC approach is highly time-consuming and
often fails to converge, when it does, it usually identifies the
global optimum (though without guaranteed certainty). We
denote the AC solution of the reconfiguration problem as
αααAC. In this paper, αααAC serves as the reference point for the
solutions obtained through the metaheuristic and mathematical
reconfiguration approaches introduced in the next section.

III. OPTIMAL RECONFIGURATION METHODS

A. Metaheuristic approach: Genetic Algorithm

This section presents a metaheuristic approach to solve the
reconfiguration problem, more specifically a genetic algorithm.
It is important to emphasize that, in the context of metaheuris-
tics, the exact formulation presented in Model 1 is merely
a description of the problem rather than being the input of
any solver. Instead, the genetic algorithm (GA), described
in Algorithm 1, iteratively searches the feasible, i.e. radial,
configuration space A. The search is guided towards optimality
by a fitness function ϕ, introduced below, while simultaneously
mutation and crossover operators introduce randomness to
avoid ending up in local optima. The best configuration found
by the GA method for a given DSR problem will be denoted
by αααGA

In this case, the fitness of a configuration is defined as
follows:

ϕ(ααα) = −
(

Ploss(ααα)

Ploss(ααα0)
+ xU + xI

)
. (4)

ϕ(ααα) is mostly determined by the active power losses
Ploss(ααα), i.e. the objective of the optimization problem (1.1).
Additionally, penalty terms for congestion constraint violations
are added; xU and xI represent boolean values indicating
respectively whether any of the voltage (1.7) or current
congestion (1.8) constraints was violated. To achieve balance
between the objective and the penalties, the power losses
are normalized with the power losses of the default network

Algorithm 1: Genetic algorithm (GA)

Hyperparameters: p, g, Pe, Pm

− Initialize population of radial configurations through
random spanning tree algorithm: pop0 ⊂ A, |pop0|= p,
i = 0.

− Determine fitness {ϕ(ααα),∀ααα ∈ pop0}
− While i < max no of generations g:

– Selection: Favor ααα with higher ϕ(ααα) through elitism
(elitism probability Pe) and binary tournament

– Exploration: Apply radiality preserving mutation
(mutation probability Pm) or crossover (remaining
probability 1-Pm) operators on selected configura-
tions

– i = i+ 1, popi = popi−1

– Determine fitness {ϕ(ααα),∀ααα ∈ popi}
− End while
− Return ααα ∈ popi : maxϕ(ααα)

configuration (ααα0). The fitness sign is reversed such that lower
losses correspond to higher fitness.

Note that, while not explicitly present in the fitness function,
the power flow equations (1.2)-(1.6) are satisfied since they
are calculated when Ploss is determined, as defined in (3).
Moreover, the radiality constraints (1.9)-(1.12) are enforced
since only radial configurations ∈ A are considered from
the start. This is done by firstly using a random spanning
tree initialization, and secondly by employing crossover and
mutation operators that preserve radiality through maintaining
the number of open switches (exchanging switch states in
pairs) and assuring that no cycles are formed in this process
of exchanging. This idea of radiality preserving operators was
introduced in [12].

The hyperparameters of the GA method are the population
size p, the number of generations g, the elitism probability Pe,
and the mutation probability Pm.

B. Mathematical approach: Second Order Cone Relaxation

Alternatively to the metaheuristic approach (GA), a math-
ematical second order cone approach (SOC) is proposed in
this section and written out in Model 2. The mixed-integer
second order cone relaxation from [13] is applied to the exact
problem in Model 1, expanding the feasible region such that
it becomes convex, which allows to find a lower bound to the
original problem. In practice, this lower bound and the exact
solution are often found to coincide [2], [3].

To introduce the relaxed formulation, first a substitution
of variables is required, replacing the complex voltage Ui

and current Iij with their respective squared magnitudes
ui = |Ui|2, lij = |Iij |2. The voltage and current constraints
(1.6)-(1.8) are replaced by their equivalent (5.4)-(5.6). The
power flow equations, (1.2),(1.4) are replaced by (5.1)-(5.2)
and the nonlinear constraint (6), which are equivalent for radial
networks [13]:

|Sij |2 = uilij ,∀ij ∈ L. (6)
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Model 2: Second order cone relaxation (SOC)

Inputs: same as in Model 1
Variables: Sij , si, αij , βij , βji from Model 1, and

ui - squared voltage at bus i

lij - squared current through line ij

Minimal Loss Objective: (1.1) from Model 1
Power Flow Constraints:

si =
∑

j:ij∈L
αijSij−

∑
h:hi∈L

αhi(Shi−zhilhi), ∀i ∈ I, (5.1)

αij(ui − uj) = 2αijℜ(z∗ijSij)− |zij |2lij , ∀ij ∈ L, (5.2)

|Sij |2 ≤ uilij , ∀ij ∈ L, (5.3)

Demand Constraint: (1.5) from Model 1
Voltage Constraints:
ui = (U ref

i )2, ∀i ∈ I ref, (5.4)

(Umin
i )2 ≤ ui ≤ (Umax

i )2, ∀i ∈ I \ I ref, (5.5)
Current Constraint:
lij ≤ (I rated

ij )2, ∀ij ∈ L (5.6)

Radiality Constraints: (1.9)-(1.12) from Model 1

The second and last step in obtaining the SOC formulation in
Model 2, is to make the feasible region convex by relaxing the
nonlinear equality in (6) to an inequality resulting in second
order cone constraint (5.3).

This relaxed mixed-integer second order cone problem can
be solved with mixed-integer branch and bound approaches,
binding the solution between an upper and lower bound up to
a prescribed distance. The upper bound is the objective value
of the best found radial solution αααSOC:

ObjSOC =
∑
i∈I

pi, satisfying (5.1) − (5.6) for αααSOC. (7)

The lower bound LBSOC is determined by the global optimum
of the candidate node with the highest lower bound in the
branch and bound. The maximum distance between upper and
lower bound is set by the solver’s hyperparameter MIPgap.

However, even if LBSOC = ObjSOC, the relaxation will still
be inexact if the equality in (5.3) is not satisfied and therefore
ObjSOC ̸= Ploss(αααSOC). In all cases, the losses of the optimal
solution are guaranteed to be bounded by:

LBSOC ≤ Ploss(αααAC) ≤ Ploss(αααSOC). (8)

C. Performance indices

Numerical results use the following performance indices to
assess the methods performance:

1) Computation time in seconds. t (s)
2) Absolute and relative loss reduction:

∆P abs
loss = Ploss(ααα)− Ploss(ααα0) [kW ], (9)

subnet 1

subnet 2

subnet 3

Fig. 1: Illustration of a network containing three subnetworks
[14].

∆P rel
loss = 100

(
1− Ploss(ααα)

Ploss(ααα0)

)
[%]. (10)

3) Optimality gap (%): the relative difference in losses with
respect to the AC solution αααAC :

Gap = −100

(
1− Ploss(ααα)

Ploss(αααAC)

)
[%]. (11)

Alternatively, in absence of αααAC , the best found solution
is used as a reference: min(Ploss(αααGA), Ploss(αααSOC)).

4) Guaranteed maximal optimality gap (%). Only possible
for SOC, based on the objective’s lower bound LBSOC :

GapLB = 100

(
1− LBSOC

Ploss(αααSOC)

)
[%]. (12)

IV. LOW VOLTAGE NETWORK CHARACTERISTICS

A. Subnetwork division

Before applying both methods introduced in section III, a
closer look at the network properties is taken in this section,
especially those properties that are specific to LV networks.
In a large LV network, for example the network of a city,
one single feeder can usually not be directly connected to
all other feeders in the network by closing some switches.
It is therefore often possible to subdivide the LV grid in
subnetworks. Within one subnetwork, feeders can be directly
connected by closing switches. However, no direct path, or
switch, between the separate subnetworks exists. This idea
is illustrated by Fig. 1. The subnetworks form independent
reconfiguration problems as described in [14]. Decoupling the
reconfiguration problem by independently reconfiguring the
subnetworks can significantly improve the DSR’s tractability
or computation time.

The sizes of the subnetworks vary significantly for the
testnetwork considered in this work. Generally, it can be
assumed that in urban regions the networks are more meshed,
and larger subnetworks will exist, while in rural regions less
or no reconfiguration options exist, corresponding to small or
single-feeder subnetworks. In contrast to LV networks, MV
networks are often more meshed and do not usually decouple
into many independent subproblems.
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/ ,     open / closed switch
,     merging ref. buses

,     contracting
non-switchable lines

Fig. 2: Reducing the network graph for counting the number of
radial configurations through Kirchhoff’s matrix tree theorem.

TABLE I: Properties of the test networks: nominal voltage,
number of feeders, switches, radial options, and subnets.

Unom (kV) |Iref| |Lsw| |A| |subnets|
LV 3800-bus net 0.23 252 534 3 1062 164
MV 84-bus net 11.4 11 89 4 1011 2
MV 136-bus net 13.8 8 118 2 1018 1

B. Combinatorial size

Because network size can significantly impact different
reconfiguration methods performance, it is necessary to take
network size into account when comparing methods. For
this paper, we propose to categorize the networks by their
number of possible radial options |A|, which will be called
the combinatorial size. In contrast to categorizing in terms of
number of feeders or number of switches, the combinatorial
size gives a clearer picture of the problem’s actual complexity.

The combinatorial size can be calculated by means of
Kirchhoff’s matrix tree theorem from graph theory. In graph
theory, the concept of radiality is equivalent to the concept of
spanning trees. Kirchhoff’s matrix tree theorem shows that the
number of spanning trees in a graph can be computed from
the Laplacian matrix of this graph, specifically the number of
trees equals any cofactor of this Laplacian matrix [15] [16].

Kirchhoff’s theorem can not be directly applied to the
original network graph because it is designed for spanning
trees with a single root, while a radial configuration typically
corresponds to a spanning forest with multiple roots (the
reference buses). Additionally, Kirchhoff’s theorem does not
consider the constraint that all non-switchable lines must
always be present in any radial solution. To address these
issues, a reduced graph is created, as illustrated in Fig. 2,
by firstly merging all reference buses into one root-node, and
secondly by contracting all non-switchable lines into a single
node. This reduced graph retains the same number of possible
radial configurations |A| as the original network graph while
allowing direct application of Kirchoff’s theorem.

In what follows, combinatorial size |A| will be used to
categorize the networks.

V. NUMERICAL TEST CASE

A. Description of Test Setup

a) Network data: The proposed metaheuristic and math-
ematical reconfiguration methods are compared for three test
networks consisting of one LV network, a 3800-bus (0.23 kV)
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Fig. 3: Histogram showing the distribution of subnetworks
with respect to their number of feeders |I ref| [14].
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Fig. 4: Categorization of subnets by their combinatorial size
|A|, illustrated on the empirical cumulative distribution.

Spanish network described in [17], and two MV networks, the
83-bus (11.4 kV) and 136-bus (13.8 kV) networks introduced
in [18] and [19]. Their main properties are listed in Table I.

The demand inputs sdi of the LV grid correspond to the
average of a 20 day load measurement series from [17]. For
the MV grids, the demand inputs correspond to the demands
given in [18] and [19]. The voltages are expressed per unit
with U ref

i = 1, and limits Umin
i = 0.9, Umax

i = 1.1. The rated
current I rated

ij is a line dependent parameter.

TABLE II: Two versions of the GA reconfiguration method
with different hyperparameters: (p, g)

GA1 GA2
(p, g) (p, g)

LV subnets |Iref|=1 - -
|Iref|=2 (7, 15) (7, 8)
|Iref|=3 (10, 30) (10, 15)
|Iref| >3 (15, 60) (15, 30)

LV net (20, 175) (20, 125)
MV 84-bus net (15, 110) (15, 80)
MV 136-bus net (20,200) (20, 150)
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b) LV Subnetworks and categorization: The LV network
consists of 164 subnetworks, with the subnetworks defined as
in Section IV-A. In Fig. 3, a histogram shows the subnetworks’
distribution with respect to their number of reference buses.
Remarkably, from the 164 subnetworks, there are 101 single-
feeder subnetworks which can not be further reconfigured,
hence only 63 reconfigurable subnetworks remain, and only 3
of them contain more than 3 feeders. As indicated in Section
IV-B, these reconfigurable subnetworks are categorized by
their combinatorial size |A|. This categorization is illustrated
in Fig. 4. Apart from the non-reconfigurable subnets (|A|=1),
three size categories are defined: small (|A| ≤10), medium
(10< |A| ≤103), and large (|A| >103), containing respectively
49, 12, and 2 subnets.

In contrast, as can be seen in Table I, the 83- and 136-
bus MV networks only have 2 and 1 subnetworks due to their
meshedness. Consequently, they also have larger combinatorial
sizes, 4·1011 and 2·1018 respectively. Additionally, the non-
decoupled LV network is also listed in Table I. Notice that it’s
combinatorial size (3·1062) is many orders of magnitude larger
than the size of it’s largest subnet (4·108). This highlights the
critical role of decoupling in reducing computational demands.

c) Implementation: All calculations described in this
work are performed on a 64-bit machine with Intel(R)
Core(TM) i5-10310U CPU @ 1.70GHz and 8 GB RAM. The
AC and SOC methods are implemented in the PowerModels.jl
framework [20], using the Julia programming language. The
AC method uses the Juniper solver, which relies on Gurobi as
mixed-integer solver and Ipopt as nonlinear solver. Meanwhile,
the SOC method employs Gurobi as its solver. The GA frame-
work is implemented in Python and uses a self-implemented
backward forward sweep method to calculate the power flows
in each iteration.

The values of the hyperparameters for the genetic algorithm:
population size p, maximum number of generations g, mu-
tation probability Pm, and elitism probability Pe are chosen
empirically. Pm and Pe are set at 70% and 30% respectively,
while p and g are network dependent, and their values are
listed in Table II. Two hyperparameter scenarios are tested,
resulting in two variations of the metaheuristic reconfiguration
method. The first one, GA1, has a larger maximum generation
number and therefore gets a longer time to converge, it is
therefore more conservative than the second method, GA2.
Notice that non-reconfigurable, single-feeder subnetworks do
not need hyperparameters. For the SOC method, the gap
tolerance, MIPgap, is set at 0.01%.

d) Case studies: Two case studies will be described:
• Case study 1: Comparison of the GA1, GA2, and SOC

methods’ performanc on the LV subnetworks of varying
combinatorial sizes.

• Case study 2: Comparison of the GA1, GA2, and SOC
methods’ performance for both LV and MV networks.

B. Case study 1: Method comparison for LV subnetworks

a) Loss reduction and optimality gap: Fig. 5a shows
the distribution of the default losses for each of the subnets

Ploss(ααα0), which sum up to a total loss of 30.70 kW as
reported in Table III. For the reconfigurable subnets, Fig.
5b shows the absolute loss reduction ∆P abs

loss(ααα) for each
subnet and each method, summing up to 9.03 kW for GA1,
9.00 kW for GA2, and 9.03 kW for SOC for the total LV
network. Though GA2 scores a tiny bit less, the results look
almost indistinguishable. It can be concluded that all methods
have practically the same performance in terms of minimizing
losses.

In Fig. 5d the optimality gap, Gap, is shown, illustrating
how GA1 and SOC reach global optimality (Gap=0) for all
subnets, while GA2 is globally optimal for the small and
medium subnets, and within (Gap<0.5%) for the large subnets.
On a side note, it is worth mentioning that in several cases,
multiple solutions were identified as globally optimal, with
accuracy up to 10−6 kW. This suggests a flat optimal surface
for the LV subnets.

The maximal gap guaranteed for SOC, GapLB is given in
Fig. 5e. Because LBSOC is a lower bound, GapLB should
always be positive. However, slight negative values are found
as well, which might be due to the inequality tolerance within
the solver. For the total LV network, it can be concluded that
SOC guarantees global optimality within an uncertainty range
of 0.01%.

b) Computation time: In Fig. 5c the computation time
per subnet, per method is given. A first observation is that the
computation time is clearly correlated to the subnet’s combi-
natorial size category, notice that the time-axis is logarithmic.
Allowing to meaningfully compare results per category.

• Large subnets (|A| >103): GA1 and GA2 are signifi-
cantly faster than SOC.

• Medium subnets (10< |A| ≤103): GA2 is comparable
(usually slightly faster, sometimes slightly slower) to
SOC computation, GA1 is slightly slower.

• Small subnets (|A| ≤10): SOC is mostly faster than GA1
and GA2, however in these cases, a simple enumeration
of the feasible configurations might be a more efficient
way to determine the best configuration.

In addition to the GA1, GA2 and SOC results, Fig. 5c
also shows the much longer computation times for the AC
method. The three largest subnets did not converge for the
AC method as the iteration limit was reached. As listed in
Table III, the overall computation times sum up to 65 s for
GA1, 31 s for GA2, and 347 s for SOC. The halving of
computation time from GA1 to GA2 illustrates the importance
of hyperparameter-tuning. Finally, Table III shows the infea-
sibliity of the non-decoupled approach, as it takes 12 times
longer than the decoupled scenario for GA and exceeds the
time limit for SOC.

c) Discussion: Since the large subnets contribute most
to the computation time, GA2 provides a factor 10 speedup
with respect to SOC, and is therefore recommended. However,
if computation time is less important and a guarantee on the
maximal gap is preferred, SOC should be used.
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Fig. 5: Performance of all methods for each of the subnetworks, categorized by combinatorial size.

Because these results were based on a LV network with 164
diverse subnets, this conclusion is expected to be robust and
the methods are likely to behave similar on new LV subnets.

C. Case study 2: Method comparison for LV and MV networks

a) Loss reduction and optimality gap: Table III shows
that for both the 84-bus network and the 136-bus network
all three methods have similar performance in terms of loss
reduction, respectively 11.9 % and 12.5 % with optimality
gaps lower than 0.02 % and 0.1 % respectively. The AC
solution was only found for the 84-bus network, while the time
limit was exceeded for 136-bus network. The maximal gap
GapLB guaranteed by SOC is higher for these MV networks
than they were for the LV subnets, though they are still very
small: 1.17 % and 0.64 % respectively.

b) Computation time: Computation times are again eval-
uated in relation to the networks’ combinatorial sizes:

• 136-bus net (|A| =2·1018): GA2 (GA1) is 2.5 (2) times
faster than SOC.

• 84-bus net (|A| =4·1011): The SOC method is 3 (4) times
faster than GA2 (GA1).
c) Discussion: So both for the LV subnetworks and the

MV networks the trend seems to be that SOC method is
faster for networks with smaller combinatorial size, while
the metaheuristic method GA2 is faster for networks with
larger combinatorial size. However, the size at which the GA2
overtakes SOC in computation time differs greatly for the LV
and MV networks. The SOC method was still 3 times faster
than GA2 for the 84-bus network, while it’s size, |A| =4·1011,
is larger than any of the LV subnets.

TABLE III: Computation time, loss reduction, and (guaran-
teed) optimality gap for each network, and for all methods.

t (s) Ploss ∆P rel
loss Gap GapLB

(kW) (%) (%) (%)
LV net ααα0 - 30.70 - - -

decoupled GA1 65 21.68 29.4 0 -
|A| ≤ 4 · 108 GA2 31 21.69 29.3 0.05 -

SOC 347 21.68 29.4 0 0±.01
AC it. limit not all (60/63) subnets converged

not decoupled GA1 748 21.95 28.5 1.25 -
|A| = 3 · 1062 GA2 503 22.28 27.4 2.77 -

SOC >3600 n.a. n.a. n.a. n.a.
AC >3600 n.a. n.a. n.a. -

MV net ααα0 - 531.99 - -
84-bus GA1 12 469.88 11.68 0 -

|A| = 4 · 1011 GA2 10 469.97 11.66 0.02 -
SOC 3 469.88 11.68 0 1.17
AC 1225 469.88 11.68 0 -

MV net ααα0 - 320.3 - - -
136-bus GA1 47 280.1 12.5 0 -

|A| = 2 · 1018 GA2 40 280.6 12.4 0.1 -
SOC 105 280.2 12.5 0 0.64
AC >3600 n.a. n.a. n.a. -

The reason for this difference between LV and MV is not
entirely clear. The findings in Section V-B, which reveal flat
optimal surfaces in LV networks, might offer an explanation
as to why MV networks appear to be more amenable to
mathematical approaches compared to LV networks.

VI. CONCLUSION

This paper provides a performance comparison between two
distribution grid reconfiguration methods, one metaheuristic
genetic algorithm (GA) approach, and one mathematical sec-
ond order cone (SOC) relaxation, on a real European LV test
case.
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Because LV networks are inherently less meshed than
MV networks, decoupling of LV networks into independently
reconfigurable subnetworks can be exploited. Regardless of
the reconfiguration method, this decoupling allowed signifi-
cant computational speedup for LV reconfiguration: The GA
method achieved a 12-fold speedup, and issues with exceeding
time limits for the SOC method were resolved.

To meaningfully compare both methods for different net-
work sizes, the 164 LV subnets resulting from the decoupling
were categorized by means of their combinatorial size. For all
size categories, both methods perform very well in terms of
loss minimization, with an optimality gap consistently below
0.5%. However, computation times vary: SOC is faster for
small combinatorial sizes (<10), GA is comparable or slightly
faster for medium sizes (10-1000), and GA significantly
outperforms SOC for large sizes (>1000). Notably, careful
hyperparameter tuning is needed for optimal GA performance.
Because these results were derived from 164 diverse subnets,
this conclusion is robust. As the large subnets contribute most
to the computation time, GA achieves an overall computation
time that is 10-fold faster than SOC.

For the MV networks, though only two networks were
considered, the trend again seems to be that GA method is
faster for larger networks than the SOC method. However,
surprisingly, the size at which GA overtakes SOC in speed is
many orders of magnitude larger than for LV networks.

We conclude that, specifically for the reconfiguration of
LV networks, decoupling into subnetworks is indispensable.
Additionally, the metaheuristic GA method is recommended
over the mathematical SOC method providing a signigicant
computational speedup. However, if computation time is of
lesser concern, SOC provides the advantage of guaranteeing a
tight lower bound (<1%) to the found solution.
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