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Abstract

The widespread use of optimization methods in the design phase of District Heating Networks is
currently limited by the availability of scalable optimization approaches that accurately represent the
network. In this paper, we benchmark two different approaches to nonlinear topology optimization
of District Heating Networks in terms of computational cost and optimality gap. We compare a
combinatorial approach, which directly solves a mixed-integer nonlinear program, against a density-
based approach. This density-based approach relaxes the integer constraint on pipe placement and
ensures near-discrete topologies through penalization. The benchmark shows subquadratic scaling of
the computational cost for the density-based approach, making it tractable for large problems, while the
combinatorial approach scales exponentially. The combinatorial approach took 29 hours to optimize
a network for a neighborhood of about 600 streets, compared to 35 minutes for the density-based
method. Optimality gap analysis indicates that resolving the integer constraint on pipe placement does
not necessarily lead to a superior design, while making the optimization of large practical problems
intractable. In contrast, the scaling of the density-based approach remains tractable for large problems.
Further study of the optimality gap highlights the importance of consciously choosing initialization
strategies when deciding to solve the nonlinear topology optimization problem.

Keywords: District Heating Networks, topology optimization, mixed-integer nonlinear programming,
benchmark

1. Introduction

District Heating Networks (DHN) are considered
one of the core technologies to enable carbon-
neutral space heating [1]. It has the ability to
connect a multitude of different renewable heat
sources and provide heat to districts and entire
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cities. In DHNs, the typically high upfront invest-
ment cost of groundworks and piping is a core de-
cision variable for the feasibility of a development
project. Therefore in the planning phase it is cru-
cial to design the pipe routing (network topology),
pipe sizing and heat production capacities in an
optimal way. This topology optimization problem
solves the question of where to place heating net-
work pipes and at what diameter, while account-
ing for the nonlinear nature of the heat transport
physics. Together with the binary choice of pipe
placement, it is therefore inherently a Mixed In-
teger Non-Linear Program (MINLP).
Directly solving this MINLP is often challenging
and can become intractable for large problems.
The literature on solving the topology optimiza-
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tion problem for DHNs can be classified into the
following four main strategies:

• Heuristic methods.

• Combinatorial optimization directly solving the
MINLP.

• Linearization creating a Mixed Integer Linear
Program (MILP).

• Relaxation of the integer constraint, solving a
Non Linear Problem (NLP).

Since the field of topology and design optimiza-
tion of DHNs has expanded rapidly in recent years,
examples of the four different approaches are re-
viewed in the literature. First, the use of heuris-
tic search algorithms to solve the MINLP problem
was done early on. Li and Svendsen [2] used a ge-
netic algorithm to optimize the network topology
based on a nonlinear thermal-hydraulic network
model. To account for uncertainty, Egberts et al.
[3] used a single objective genetic algorithm to op-
timize the topology and pipe diameters based on a
heating network simulation. Allen et al. [4] used
both a minimal spanning tree heuristic and a par-
ticle swarm algorithm to optimize the topology of
a small DHN.
Fully exploiting the potential of mathematical op-
timization to solve the MINLP has been done no-
tably by Mertz et al. [5]. They solve the full
MINLP by directly resolving the discrete nature
of pipe routing choices using a combinatorial opti-
mization approach. This approach has been used
to optimize the design of an existing DHN [6], and
later by Marty et al. [7] for the optimal design of
a Rankine cycle combined with a small heating
network topology.
Both direct heuristic approaches and direct MINLP
solutions are challenging and can become intractable
for large problems. As a result, the topology
optimization problem of heating networks is of-
ten linearized, resulting in a linear optimization
problem that can be solved efficiently using MILP
solvers. Söderman [8], for example, optimized the
structure and configuration of a district cooling
network using a MILP approach. Dorfner and

Hamacher [9] later used a linear approach to op-
timize the topology and pipe sizes of a DHN.
Haikarainen et al. [10] optimized the topology
and operations, while accounting for different pro-
duction technologies and heat storage. Mazairac
et al. [11] optimized the topology of a multi-
carrier network that incorporates gas and electric-
ity supply. Morvay et al. [12] optimally designed
the network while also optimizing the energy mix
supplied. Using a MILP approach, Bordin et al.
[13] optimized the network topology while study-
ing the set of consumers to optimally connect to
a DHN. Comparing a MILP formulation with a
heuristic approach, Weinand et al. [14] optimize
both the topology and the location of the heating
plants. Neri et al. [15] used a linearized MILP
approach to determine the optimal topology, pipe
diameter, and set of consumers connected to a
district cooling network. Similar to the previous
authors, they compared this approach to heuris-
tic methods, including a combination of a min-
imum spanning tree heuristic and a genetic al-
gorithm. Recently, Resimont et al. [16] used a
MILP approach to optimize a city-scale heating
network. The transformation of modern DHNs
towards multi-source, low-temperature networks
[17] renders the assumptions of most linear heat-
ing network models inadequate. To accurately
model heat losses and to account for different fea-
sible temperature levels at both supply and de-
mand sites in DHNs, a nonlinear representation
of network physics is required. While linearized
MILP approaches to the topology optimization
problem of DHNs improve tractability, their ap-
plicability is therefore limited by the type of prob-
lems they can effectively solve.
An alternative way to improve tractability while
preserving the nonlinear representation of network
physics is to relax the integer constraint on pipe
placement. This allows efficient solution of a NLP
problem. Pizzolato et al. [18] used this method
to robustly optimize the topology of a DHN based
on a hydraulic network model. Later, Blommaert
et al. [19] and Wack et al. [20] solved a relaxed
NLP of the thermal-hydraulic problem, ensuring a
discrete network topology through density-based
penalization. The method is inspired by density-
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based topology optimization, which is popular in
the field of partial differential equation (PDE)-
constrained topology optimization [21]. This method
scales well with problem size, allowing optimiza-
tion of large-scale problems.
The current bottleneck to a widespread use of op-
timization methods for the design and topology
optimization of DHNs are an accurate represen-
tation of the network while maintaining scalabil-
ity of the approach. Identifying the most suit-
able methods to address this challenge is crucial
to facilitate the practical implementation of opti-
mized DHNs. The goal of this paper is therefore
to benchmark the performance of two methods
for solving the nonlinear topology optimization
problem of DHNs: the combinatorial approach by
Mertz et al. [5] and the relaxed density-based ap-
proach by Wack et al. [20]. The benchmark ana-
lyzes the computational complexity of both ap-
proaches and compares their optimality gap to
find the most promising method for future re-
search. With this benchmark, we aim to stream-
line future research and potentially minimize re-
dundant efforts. Therefore, we first compare the
computational cost scaling of both optimization
approaches with the network size to evaluate their
suitability for large-scale DHN development projects.
Both approaches solve nonlinear and non-convex
optimization problems, so the found optimal net-
work designs can be different local optima. There-
fore, in a second step, the optimality gap between
the two approaches is investigated for both single-
producer and multi-producer DHNs. Here, the
importance of resolving the discrete nature of the
pipe routing problem, as well as the influence of
initialization strategies on the found local optima
is discussed.

2. The topology optimization problem of
DHNs

To compare both approaches, a topology opti-
mization problem is defined that aligns the prob-
lem definitions of Mertz et al.[5] and Wack et al
[20]. This ensures comparability of the results
with both approaches. For completeness, the op-
timization problem definition is repeated here in

Table 1: Notation used to describe different subsets of the
DHN.

Set Symbol

All edges E
Producer input Epr

Pipes Epipe

Feed edges Ef

Heating system Ehs

short, for detailed discussion the reader is referred
to the afore-mentioned publications.
In order to represent the design and topology op-
timization problem of a DHN, a set of design
variables φ = [d,γ] is defined, containing the
pipe diameters d as well as the normalized pro-
ducer inflows γ. To represent the physical state
of a given network, a vector of physical variables
x = [q,p,θ] is defined. It contains the flow rates
q, nodal pressures p and nodal and pipe exit tem-
peratures θ. The temperatures θ = T − T∞ are
defined as the difference between the absolute wa-
ter temperature T and the outside air tempera-
ture T∞. Now the topology optimization problem
for a DHN can be posed as a generic optimization
problem of the form:

min
φ,x

J (φ,x)

s.t. h(φ,x) ≤ 0.
(1)

Here J represents the cost function and is defined
as the total cost of the project over an investment
horizon of A = 30 years. h(φ,x) defines the set
of model and technological constraints. A full def-
inition of the cost function and model constraints
for this benchmark can be found in Appendix A.
This optimization problem is based on Mertz et
al. [5] and Wack et al. [20] and a detailed descrip-
tion of the underlying costs and models can also
be found there. In the problem definition, the set
definition in table 1 is used to reference different
parts of the network.

3. Methodology

To compare the two approaches, the topology op-
timization problem (described in equation 2) is
solved using two different methods: solving the
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full MINLP problem in GAMS using the imple-
mentation of Mertz et al. [5] (referred to as fMINLP
for simplicity), and using the density-based op-
timization approach of Wack et al. [20] imple-
mented in the PATHOPT tool (referred to as pNLP).
Both implementations were simplified to facilitate
comparison. The pNLP implementation no longer
considers multiple discrete pipe diameters, while
the fMINLP implementation no longer optimizes
the production side or cascading supply between
high and low temperature consumers. The fol-
lowing sections briefly discuss the two methods
and their different treatment of the binary pipe
existence variable.

Combinatorial MINLP approach: fMINLP

For the comparison, the topology optimization
problem will be solved using a combinatorial MINLP
approach. This approach was previously pub-
lished by Mertz et al. [5], and a comprehensive
discussion of the approach can be found there.
It is implemented in GAMS and uses the MILP
solver CPLEX and the NLP solver CONOPT. To
pose the optimization problem as a combinatorial
problem, the topological choice of pipe placement
is represented by a binary variable ϕ. Physical
variables defined on these pipes are then coupled
to this existence variable using the bigM method
(M) [5], as e.g. in the flow velocity definition:

mij −M (1− ϕij) ≤ vijρπ
1

4
d2ij (2)

vijρπ
1

4
d2ij ≤ mij +M (1− ϕij) , ∀ij ∈ Epipe.

(3)

Here v denotes the flow velocity, and M ≫ mij

is chosen in such a way that if a pipe exists ϕij =
1, the bounds on the flow velocity constraint are
tight. If ϕij = 0, the bounds of this constraints
are relaxed. To force the installation of both feed
and return pipes the following constraint is used:

ϕij = ϕji, ∀ij ∈ Epipe. (4)

The fMINLP implementation features additional
constraints to facilitate convergence. They are

defined in a way to not be active in the final op-
timal design, in order to maintain the same final
problem formulation as the pNLP. First, the in-
stalled capacity H is bounded by the sum of the
consumer demands:

∑
ij∈Epr,f

Hij =
∑

ij∈Epr,f

(qθ)ij ρcp ≤ 1.5
∑

kl∈Ehs

Qkl.

(5)
To facilitate convergence on the momentum equa-
tions, the velocity and pressure drop over a pipe
are bounded by:

vij ≤ 3.5, (6)

vij ≤ 18.438dij + 0.2186, (7)

vij ≥ vminϕij, (8)

pi − pj ≤ 200Pa ∀ij ∈ Epipe. (9)

These constraints are not active in the final opti-
mized design as they are dominated by the pipe
momentum equation (A.8). A fixed pressure drop
is set for the heat exchanger

pi − pj ≥ 2 kPa, ∀ij ∈ Ehs, (10)

and the exit temperature of the radiator is re-
quired to be smaller than the inflow temperature:

θi ≥ θj, ∀ij ∈ Ehs. (11)

Finally, this optimization strategy uses a sequence
of initializations to ensure stable convergence of
the final MINLP solve, based on the strategy of
Marty et al. [7]. For completeness, this initial-
ization sequence is briefly described in Appendix
B.

Density-based penalization approach: pNLP

The other considered approach is the density-based
penalization approach by Wack et al. [20]. Here,
the combinatorial problem is relaxed, allowing for
a continuous pipe placement choice. A near-discrete
topology is then enforced by penalization, e.g. by
replacing p0 in the investment cost function (equa-
tion A.4) by

p̄0(dij) = p0

(
1

(1 + exp(−k (dij − dmin))
)− 1

)
,

(12)
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or by explicitly penalizing the d in the investment
cost function and within the momentum and en-
ergy equations, as described in Wack et al. [20].
Because of this relaxation, the MINLP reduces to
solving a series of NLPs. Here the optimization
is initialized with a uniform distribution of pipe
diameters.

4. Benchmarking computational cost - a sin-
gle producer case

Modern DHNs grow ever bigger and more com-
plex, including multiple heat production sites at
different temperatures, which optimal design tools
must be able to handle. These tools therefore
need to scale well with the heating network size
in order to be applicable to relevant cases. In this
first benchmark, the computational cost scaling
of a combinatorial MINLP approach (fMINLP)
is compared to solving a relaxed penalized NLP
(pNLP). This is done on a benchmark case con-
taining a single producer.

Setup

To be able to compare the computational cost
scaling of both optimization approaches with in-
creasing network size, an easily scalable DHN op-
timization case is set up. This benchmark case is
visualized in figure 1.

Consumer

Producer

Figure 1: Setup of the first benchmark case. Around a
central producer, heat consumers (houses) are arranged in
a circular pattern. They are connected by possible pipe
routes (black lines). Pipe junctions are visualized as black
circles. To increase the size of this case, additional seg-
ments s are successively added to the outside of the net-
work.

Here a heating network is to be designed around a
single heat producer in the center of the network.

This producer provides heat at 70 ◦C. Around
this central producer, houses and possible pipe
connections are arranged in a circular manner.
All houses have a heat demand of Q = 15 kW,
and their heating system characterized by ξ =
200W/Kn and n = 1.2. To investigate the cost
scaling, the size of this circular network is suc-
cessively increased by adding additional segments
s. With each segment, additional heat consumers
and 5 additional potential pipe connections are
added, with the number of potential pipes follow-
ing a linear scaling: n (s) = 5s + 13. In figure 1
the addition of the segments s = 10 and s = 11 is
visualized in red and blue.
Now the benchmark of both approaches is per-
formed by creating a series of heating networks of
increasing size. Segments s are added in steps of
10, starting from s = 0 up to s = 190, thus creat-
ing a sequence of heating networks with (sk)

19
k=0, sk =

10k segments. This sequence of optimization prob-
lems is solved by both the fMINLP implementa-
tion as well as the pNLP. This optimizations were
performed on the same computer (using a single
Intel Xeon 3.20 GHz processor core).

Comparison of the computational cost

The optimization was repeated 3 times for each
network and the mean runtime until convergence
(wall time) was recorded. The wall time for each
network size is visualized in figure 2 on a a) semi-
log graph and a b) log-log graph.
The figures show that the wall time for the fMINLP
implementation scales faster with the network size
then for the pNLP. The largest network size for
which both approaches converged was n = 612
potential pipe connections. Here, the fMINLP
approach took 28.75 hours to optimize the net-
work, compared to 34.96 minutes using the pNLP.
In order to get an understanding of how long it
would take both approaches to optimize networks
of considerable size, it is useful to understand
which function governs their cost scaling. Con-
sidering the algorithmic differences of solving a
MINLP in the case of the fMINLP and solving a
relaxed NLP in the case of the pNLP, both an
exponential and a polynomial time scaling were
tested for both approaches. First, an exponen-

5



0 200 400 600 800 1000

Network size n

1 s

10 s

2 min

17 min

3 h

28 h

278 h

w
a
ll

ti
m

e

a) log y-scale

101 102 103

Network size n

1 s

10 s

2 min

17 min

3 h

28 h

278 h

b) log x,y-scale

pNLP

fMINLP

47.31 e0.006n, R2 = −0.01
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0.16 n1.75, R2 = 0.08

Figure 2: Wall time scaling of the two approaches with increasing network size n. The scaling of the approach in the
fMINLP is described well by an exponential fit a), while the scaling of the pNLP can be described well by a power fit
b). The pNLP did not converge for the case n = 713, while the fMINLP did not converge for any case n ≥ 663. All
non-converged optimizations are excluded from the figure and subsequent analysis

tial fit was performed for the scaling of both ap-
proaches (see figure 2 a)). The wall time scal-
ing of the fMINLP can here be described by the
function wfMINLP (n) = 51.43e0.012n s with an co-
efficient of determination of R2 = 0.87, while the
wall time scaling of the pNLP can be described
by wpNLP (n) = 47.31e0.006n s with a coefficient
of determination of R2 = −0.01. From this fit
it can be concluded that the wall time scaling
of the fMINLP approach can be described well
by an exponential function, while the wall time
scaling of the pNLP approach cannot. Second, a
power function was fitted to the wall time scal-
ing of both approaches. Here, the scaling of the
pNLP can be described by wpNLP (n) = 0.04n1.72

with a coefficient of determination of R2 = 0.85
and the scaling of the fMINLP can be described
by wfMINLP (n) = 0.16n1.75 with R2 = 0.08. It
can be concluded that the wall time scaling of the
pNLP follows a polynomial function reasonably
well, while the fMINLP cannot be described by a
polynomial function.
The comparison above highlights the potential ex-
ponential solution time of solving full MINLPs.
In the context of DHN optimization, this steep
cost scaling does not only make design studies
slow and expensive, its exponential nature ren-

ders optimizations of considerably sized networks
intractable and serves as a bottleneck for the op-
timization of large-scale DHNs, containing thou-
sands of potential pipe connections. For example
to optimize a network containing n = 2000 po-
tential pipe connections, an optimization time of
wfMINLP (n) ≈ 43000 years would be needed ex-
trapolating the observed exponential trend of the
MINLP solution time. In the context of topology
optimization of DHNs, it is computationally fa-
vorable to solve a relaxed NLP, as is evident from
the polynomial wall time scaling of the pNLP im-
plementation. The polynomial scaling of the com-
putational solution time with this approach makes
large-scale DHN optimization feasible. This is
highlighted for the above example of a network
with n = 2000, where the necessary optimization
time reduces to wpNLP (n) ≈ 5.3 hours when us-
ing the relaxed NLP implementation of the pNLP,
extrapolating the observed polynomial trend.
The potentially exponential computational cost
scaling of solving full MINLPs should be taken
into account when choosing optimization strate-
gies for DHN topologies. It will make the opti-
mization of large-scale DHNs intractable and hin-
der the application of such optimization tools to
real-world DHN problems. It is therefore advis-
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able to simplify the MINLP formulation by ei-
ther linearizing the nonlinear model constraints,
posing the problem as a MILP, or by relaxing
the integer constraints, reformulating the problem
as a NLP. This second relaxation is done within
the pNLP implementation, and while keeping the
nonlinear model in the overall optimization pro-
cedure, its significant speed-up in computational
cost is shown in this paper.

Comparison of found optimal network topologies

Both approaches solve a nonlinear optimization
problem. This is necessary because the nonlinear
heat transport physics can have a large influence
on the network design. Non-linearities in the opti-
mization problem, however, can lead to multiple
local optima. The proneness of both optimiza-
tion approaches to these local optima is therefore
studied in a next step. Here it can be investi-
gated, if the relaxation of the integer constraints
of pipe placement by the pNLP has a relevant in-
fluence on the cost of the found optimal network
design. For this purpose, the optimality gap of
both approaches is compared. The optimal total
annualized cost for each benchmark step found
with both approaches is visualized in figure 3.1

It can be seen that in this case the fMINLP im-
plementation (figure 3 red) consistently finds a
cheaper DHN design than the pNLP implemen-
tation (figure 3 blue). To check if this optimal
design found by the fMINLP is indeed a better
local optimum, the optimization is repeated in
the pNLP and initialized with the optimal design
found in the fMINLP (Figure 3 green). As can be
seen in figure 3, the pNLP remains in the opti-
mum of the fMINLP, indicating that it is indeed
a better local optimum that the pNLP was unable
to find with the used initialization strategy.
To better understand the difference in optimal
network designs that causes this cost difference,
the optimal network topologies found for network
sizes n = 63 and n = 463 by both approaches
are visualized in figure 4. The figure shows that

1To prevent potential remaining modelling differences
from skewing the comparison, both found optimal designs
where evaluated in a simulation within the pNLP.
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3

Network size (n)

100 M€

200 M€

300 M€

400 M€

Total
annualized cost

pNLP fMINLP fMINLP & pNLP

Figure 3: Comparison of the optimal total annualized cost
for each benchmark step found by the fMINLP imple-
mentation (orange) and the pNLP implementation (blue).
To verify that the fMINLP indeed consistently found a
cheaper local optimum, the pNLP optimization is run us-
ing the fMINLP optima as initialization (green). The
pNLP did not converge for the case n = 713, while the
fMINLP did not converge for any case n ≥ 663. All non-
converged optimizations are excluded from the figure and
subsequent analysis

the optimal topologies of both approaches differ,
with the pNLP using overall a longer pipe length.
This difference in the optimal design can be ex-
plained by the different initialization methods of
the optimization approaches. To facilitate conver-
gence, the fMINLP implementation is initialized
with a MILP solve, that effectively minimizes the
overall used pipe length while satisfying the heat
demands of the consumers. This initialization
promotes topologies with minimal pipe lengths,
which turns out to be a good optimal network
topology for single producer networks. This opti-
mal topology continues to be an optimum when
later solving the full MINLP as well, as can be
seen in figure 4 b) and d). The pNLP, on the
other hand, initializes the full MINLP from a uni-
form distribution of pipe sizes, and thereby finds a
different local optimum with a larger overall pipe
length (see figure 4). This knowledge of the influ-
ence of initializations on the optimal topology can
be used to reduce the sensitivity to local optima
for both optimization approaches. In the follow-
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pNLP

Network size 

n = 113

a) b)

d)c)

Network size 

n = 463

fMINLP

100 m

Figure 4: Comparison of the optimal topology found with the fMINLP and the pNLP for the case of size n = 113 and
the case of size n = 463. The optimal topologies found by the fMINLP use a shorter pipe length then the topologies
found by the pNLP. Red lines represent the pipe network connecting the producer, heat consumers (black dots) and
pipe junctions (grey dots). The line thickness indicates the pipe diameter while unused pipe connections are drawn in
grey.

ing section 5, it will be studied how the initial-
ization of both approaches performs on a multi-
producer case.

5. The influence of initialization - a two
producer case

Modern 4th generation DHNs often feature mul-
tiple producers with different injection temper-
atures. To compare how both optimization ap-
proaches perform when designing such networks,
a benchmark case was designed featuring two heat
producers.

Setup

For this benchmark, a circular scalable test case
with two producers with different injection tem-
peratures is set up. The layout of this case is
shown in figure 5. The circular network super-
structure for this case is equivalent to the case
in section 4, representing a potential district to
be connected to a DHN. Here, two producers are
placed to the left and right of this district. The
two producers represent different heat production
technologies, with the left producer supplying heat
at 70 ◦C with high costs (ChC = 800e/kW, ChO =

8 ct/(kWh)), while the producer on the right sup-
plies heat with 55 ◦C at a lower cost (ChC = 0e/kW,
ChO = 4 ct/(kWh)). The district contains houses
with different heat system characteristics. While
the houses on the top right, using a modern heat-
ing systems, can work with water at ⪆ 50 ◦C, the
rest of the houses require heat at higher temper-
atures (⪆ 60 ◦C) than the low temperature pro-
ducer can provide. The size of this network can be
increased by adding additional rings of houses to
this network, representing different sizes of DHN
development projects.

Comparison of the optimized network designs

The presented case is now optimized using both
the fMINLP and pNLP implementations. To com-
pare the two approaches, three different networks
of increasing size are optimized (case 1 with n =
138, case 2 with n = 298 and case 3 with n =
618). The annualized costs of the resulting op-
tima found by both approaches are visualized in
figure 6.2

The cost comparison shows that in this two pro-
ducer case, the pNLP found an optimal network

2Again the optima of both approaches were evaluated
with a pNLP simulation to avoid discrepancies.
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New houseOld house

Figure 5: Setup for the two producers case. This setup features two producers on the left and right of a circular network.
The network features old houses that require high temperature heat (red) and newer houses that can satisfy their demand
with lower temperatures (green). The heat from the left producer (red) can supply all houses, while the right producer
(green) can only supply the houses in the top right quadrant.
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Figure 6: Comparison of the optimal total annualized cost
for cases 1-3 found by the fMINLP and the pNLP im-
plementations. While the fMINLP finds optimal design
of lower pipe costs (green), the pNLP finds optimal de-
signs that save on heating costs (red), ultimately leading
to lower total annualized costs for all three cases.

design with a lower total annualized cost than the
fMINLP in all three cases. While the optimal net-
work design of the fMINLP is again cheaper in
pipe investment cost, large savings in heat costs
can be made with the proposed optimal design
by the pNLP. While in case 2 the pipe invest-
ment cost of the optimal network design found by
the fMINLP is 2.1Me lower, the optimal design
found by the pNLP achieves heat cost savings of
14.4Me, ultimately leading to a lower total an-

nualized cost.
For a better understanding of the difference in the
optimal designs, the optimal topologies of both
approaches are compared. In figure 7, the optimal
network topologies of cases 1 and 2, optimized by
both the pNLP and the fMINLP, are visualized.
It can be seen that the optimal topologies found
by the pNLP connect most new houses to the low
temperature producer on the top right, effectively
creating two separate networks at different tem-
peratures. This use of cheaper, low-temperature
heat from the producer on the right leads to the
cheaper optimal network designs in comparison
to the fMINLP that where observed in figure 6.
The initialization steps of the fMINLP3, on the
other hand, minimize pipe length while satisfying
the heat demands. Therefore, the method favors
an optimal topology for both cases that connects
all houses to the high temperature producer on
the left. The topology resulting from this ini-
tialization remains a local optimum also for the
full MINLP optimization. While saving on pipe
investment costs, this optimal network topology
found by the fMINLP is more expensive than the
optimal topology by the pNLP because it relies
on buying more expensive, high-temperature heat

3Further described in Appendix B
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from the producer on the left.
The results of the benchmarking study indicate
that the initialization strategy has a significant
impact on the optimal designs found by the topol-
ogy optimization approaches for both the single-
and two-producer cases. This dependence on ini-
tialization should always be taken into account
when solving non-convex optimal design problems
for DHNs that use nonlinear models or cost func-
tions. The sensitivity to initialization could be
mitigated by using global optimization, such as
running multiple optimizations from different ini-
tializations, as demonstrated by Marty et al. [7].

6. Conclusion

In this paper, we compared the performance of
two different approaches to the nonlinear topol-
ogy optimization of DHNs. While the approach
by Mertz et al. [5] solves a full MINLP, resolving
the discrete nature of pipe routing choices using a
combinatorial optimization approach (fMINLP),
the approach by Wack et al [20] solves a relaxed
NLP ensuring a discrete network topology through
density-based penalization (pNLP).
First, by benchmarking the computational cost
of both approaches, we showed that while solving
the full fMINLP describes the routing choice more
accurately, it has an exponential scaling of compu-
tational cost with network size. This exponential
scaling renders optimizations of large networks
containing thousands of potential pipe connec-
tions intractable. On the other hand, the relaxed
pNLP approach maintains a polynomial scaling of
computational cost, making large-scale DHN opti-
mization feasible. In this benchmark, the fMINLP
approach took 29 hours to optimize a network for
a neighborhood of about 600 streets, compared
to 35 minutes using the pNLP approach. We fur-
ther highlighted the scaling difference of both ap-
proaches by showing that for a DHN featuring
n = 2000 potential pipe connections, an optimiza-
tion time of about 43000 years would be needed
following the observed exponential trend of the
MINLP solution time in the fMINLP implemen-
tation. The necessary optimization time reduces
to about 5.3 hours when using the relaxed NLP

implementation of the pNLP, assuming the ob-
served polynomial trend.
This comparison of computational cost highlights
the fact that full MINLP approaches may only
be suitable for small problems, while relaxing the
integer constraint is necessary for scalability. De-
spite the comparable scalability of linearized ap-
proaches (e.g., Resimont et al. [16]), this study
did not benchmark against linear approaches due
to significant differences in the types of problems
that can be optimized. Future research should
examine their performance relative to nonlinear
methods to identify appropriate problems for which
linear models are sufficient. In addition, our study
did not benchmark heuristic methods, which could
further contribute to a comprehensive understand-
ing of the available optimization strategies for DHN
topology problems.
Second, this benchmark investigated the optimal-
ity gap of both approaches. While posing the op-
timization problem as a nonlinear optimization
problem has the benefit of an accurate represen-
tation of the DHN physics, Nonlinearities in the
optimization problem can lead to multiple local
optima. We showed in this paper how different
initialization strategies can therefore lead to dif-
ferent optimal designs. The benchmark provided
several examples of this. In a single-producer
DHN case, the fMINLP implementation consis-
tently outperformed the pNLP approach due to
its focus on minimizing pipe length during ini-
tialization. This proved advantageous for single-
producer networks. However, in a two-producer
case, this strategy became a limitation, and the
pNLP approach found more cost-effective network
topologies. The comparison therefore showed that
solving a full MINLP does not guarantee superior
DHN topologies, while significantly increasing the
computational cost.
In summary, this benchmark shows that while
directly solving the MINLP may be suitable for
small DHN topology optimization problems, its
exponential computational scaling makes large prac-
tical network problems intractable. The bench-
mark also demonstrates that solving the discrete
pipe placement constraint does not necessarily leads
to superior network designs in the cases studied.
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Figure 7: Colored lines represent the pipe network connecting the producer, heat consumers (black dots) and pipe
junctions (gray dots). The line thickness indicates the pipe diameter, while unused pipe connections are drawn in gray.
The line color corresponds to the water temperature in the pipe. While the pNLP finds an optimal topology connecting
modern houses to the low temperature source, the fMINLP implementation favors a single network connecting all houses
to the high temperature source.

For large topology optimization problems of mod-
ern DHNs, a density-based approach such as the
pNLP approach studied here is therefore more
appropriate. Finally, the benchmark also shows
that the sensitivity to local optima and the con-
sequent importance of initialization and initializa-
tion strategy should be taken into account when
solving optimal design problems for DHNs using
nonlinear formulations. It is important to for-
mulate the routing problem in such a way that
finding the global optimum is not a strict require-
ment, as long as an improved design is obtained,
e.g., by starting a nonlinear optimization from an
industry standard design (e.g., minimum span-
ning tree). This sensitivity to local optima could
be mitigated by global optimization, such as run-
ning multiple optimizations from different initial-
izations. Future studies should investigate the
sensitivity of the found optimum to initialization
for typical DHN routing problems to gain a com-
prehensive understanding of the solution space.

Data Availability

A data-set including the structure, input param-
eters and optimization results of the heating net-

works used in both benchmark cases of this paper
is available at the following link: https://doi.

org/10.48804/DO1BRQ. The optimization results
can be replicated using the methodology and for-
mulations described in this paper.
Additionally a small case generator was written
that can be used to recreate all benchmark cases
of this paper. The repository can be found at
the following link: https://doi.org/10.5281/

zenodo.7434451
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Appendix A. Detailed definition of the topol-
ogy optimization problem for
DHNs

In this section, the underlying cost function J
and the set of model and technological constraints
h(φ,x) for this benchmark are defined in detail.

Appendix A.1. Cost function

The objective function is defined as the total cost
of the project over an investment horizon of A =
30 years:

J (φ,x) = fCAP (Jpipe,CAP (φ) + Jh,CAP (x))

+ fOP (Jh,OP (x) + Jp,OP (x)) , (A.1)

with

fCAP =(1 + ea)
A , (A.2)

fOP =
1− (1 + ea)

A (1 + ei)
A

1− (1 + ea) (1 + ei)
, (A.3)

assuming a discount rate ea = 0.04 and an energy
inflation rate ei = 0.04 [5]. The investment cost
for the piping Jpipe,CAP is approximated with a
linear interpolation of the catalogue cost of com-
mercially available pipe diameters and the trench
cost:

Jpipe,CAP (φ) =
∑

ij∈Epipe

(p1dij + p0)Lij , (A.4)

with p1 = 1976.3em−2, p0 = 301.4em−1 the
interpolation coefficients and L the pipe length.
The investment cost of the building heat produc-
tion plants is calculated using

Jh,CAP (x) =
ρcp
Fηpr

∑
ij∈Epr,f

(ChC q∆θ)ij , (A.5)

with the capacity price of heat production ChC =
800e/kW, the capacity factor F = 0.33, and as-
suming an efficiency of ηpr = 0.9. Here ρ is the
density and cp is the specific heat capacity of wa-
ter. The operational heat cost is calculated using

Jh,OP (x) =
ρcp
ηpr

8760
h

yr

∑
ij∈Epr,f

(ChO q∆θ)ij ,

(A.6)
with the unit price of heat ChO = 0.06e/kWh.
The operational cost of pumps at the heat pro-
duction sites is computed with

Jp,OP (x) =
8760

ηpump

h

yr

∑
ij∈Epr,f

CpO,ij (pj − pa) qij ,

(A.7)
with the electricity price CpO = 0.11e/kWh and
a pump efficiency of ηpump = 0.7.

Appendix A.2. DHN model constraints

For all pipe junctions in the network, conservation
of mass and energy is assumed.
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Pipe model

The momentum equations in the pipes are mod-
elled using the Blasius friction factor f , assuming
a singular pressure drop of 30% [5]:

(pi − pj) =
100

70
fij

8ρLij

d5ijπ
2
|qij|qij , ∀ij ∈ Epipe,

(A.8)

with fij = 0.3164 (Re)−
1
4 , ∀ij ∈ Epipe.

(A.9)
Here Re is the Reynolds number, defined as Re =
4ρ|q|
πµd

. The energy equation over pipes is mod-
elled accounting for the thermal conductivity of
the pipe insulation λi = 0.03Wm−1K−1 and the
surrounding soil λg = 1.4Wm−1K−1,

θij = θi exp

(
−Lij

ρcp|qij|Uij

)
, ∀ij ∈ Epipe, (A.10)

Uij =
ln(4h/(rdij))

2πλg

+
ln r

2πλi

, (A.11)

assuming an insulation ratio r = 1.4 and a pipe
depth h = 0.4m [19].

Consumer model

In the consumer arc, conservation of momentum
is assumed. Conservation of energy in the heating
system leads to

ρcpqij(θi − θij) = Qij, ∀ij ∈ Ehs, (A.12)

with Qij the heat transferred to the house by the
heating system. The latter is modelled with the
characteristic equation for radiators [22] using the
LMTD approximation by Chen [23]:

Qij = ξij (LMTD (θi − θhouse, θij − θhouse))
nij .

(A.13)

with LMTD (∆θA,∆θB) (A.14)

≈
(
∆θA∆θB

(
∆θA +∆θB

2

)) 1
3

. (A.15)

Here, θhouse is the inside temperature of the house,
and ξ and n are heating system specific coeffi-
cients. The values of the coefficients ξij and nij

are tabulated for individual radiators, according
to the EN 442-2 standard [24].

Producer model

At the producer, heat is injected with an input
flow γ at a fixed temperature Θ:

qij = γij, θij = Θij ∀ij ∈ Epr,f . (A.16)

Additional state constraints

To ensure that the heat demand Qd,ij of every
consumer is met, the following constraint is de-
fined:

Qij −Qd,ij ≥ 0 , ∀ij ∈ Ehs. (A.17)

Appendix B. Initialization strategy of the
combinatorial approach
(fMINLP)

The initialization strategy for the MINLP approach
is crucial for the overall solution process. The
initial values for the variables and constraints in
the MINLP model can greatly affect the solu-
tion’s speed, accuracy, and feasibility. Figure B.8
shows the specific initialization strategy used in
the fMINLP implementation.

MIP NLP1 NLP
2

MINLP

Figure B.8: Initialization strategy of the combinatorial ap-
proach (fMINLP). The optimal network topology ϕ deter-
mined by the MIP is used to initialize the following NLPs
(red). The design variables φ and the physical variables x
are optimized in a sequence of NLPs (blue).

The initialization strategy for the combinatorial
fMINLP implementation consists of the following
steps. In the first step (MIP), a MILP model is
solved to determine an initial network topology.
For simplicity, the nonlinearities present in the
system are not considered. The optimal network
topology of the MIP step is used in NLP1,NLP2

and the MINLP as the initial network topology
(visualized by the red arrows in figure B.8). The
first NLP model (NLP1) is designed to consider
some of the nonlinearities that were ignored in the
initial MIP model. In this step, the characteristic
equation of a radiator is used in a simplified form

13



in order to reduce the computational complexity
of the optimization problem. The second NLP
model (NLP2) takes into account the full set of
nonlinearities present in the system. Finally, the
full MINLP is solved including all constraints and
binary variables.
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