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Abstract: Network flexibility is the use of the thermal capacity of water contained in the district
heating network pipes to store energy and shift the heat load in time. Through optimal control,
this network flexibility can aid in applications such as peak shaving and operational heat pump
optimisation. Yet, optimal control requires perfect predictions and complete knowledge of the
system characteristics. In reality, this is not the case and uncertainties exist. To get an insight in the
importance of these uncertainties, this paper studies the influence of imperfect knowledge of building
parameters on the optimal network flexibility activation and its performance. It is found that for the
optimisation of heat pump operation, building parameter uncertainties do not present large risks.
For peak shaving, a more robust result can be achieved by activating more network flexibility than
may be required.

Keywords: district heating, optimal control, heat demand flexibility, building parameter uncertainty,
robust control

1. Introduction

To limit air pollution and green house gas emissions, a fundamental change in our energy system
is required. In 2019, heating and cooling in the tertiary and residential sectors were responsible for
41.7 % of the total final energy use in the EU28 [1], while 79 % of energy used in European households
went to space heating (SH) and domestic hot water (DHW) [2]. Furthermore, 75 % of the energy used
for heating and cooling of buildings is based on fossil fuels, while only 18 % originates from renewable
and residual energy sources (RZES) (of which 90 % biomass) [3]. The heating and cooling sector for
buildings thus represents a large fraction of the total energy use and is a viable opportunity to improve
the system efficiency and the energy source portfolio.

Energy efficiency for the heating and cooling sector can be improved by district heating and
cooling (DHC) systems in areas with a large heat/cold density, i.e. a large heat/cold demand per
square kilometer. As Frederiksen and Werner stated, the fundamental idea of district heating (DH) is
found in local synergies between heat sources and demand [4]. By connecting sources and demand
through a pipe network, new heat and cold sources can be unlocked, such as combined heat and power
(CHP), waste incineration, industrial residual heat, combustible renewables and geothermal sources,
thereby improving energy efficiency and operational costs of the energy system. Connoly et al. [5]
found that the inclusion of DHC in an EU energy efficiency strategy for 2050 can reduce the total costs
for the heating and cooling of buildings by 15 %.

Submitted to Energies, pages 1 — 24 www.mdpi.com/journal/energies
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To increase the share of renewable and residual energy sources (R2ES), their intermittency must be
dealt with. One possible solution is to introduce energy flexibility in the energy system. Its definition
is as follows [6]: “Energy flexibility is the ability to shift the energy injection into or energy extraction from
a system in time to bypass system limitations. By introducing energy flexibility, integration of R*ES
can be improved by e.g. preventing curtailment. In this respect, DHC systems offer an interesting
opportunity; they contain multiple thermal energy storage systems (TES), such as water storage tanks,
aquifers, borefields, building thermal inertia, and the network itself. Intelligently deploying TES to
create energy flexibility [7] can pave the way to large shares of R?ES.

Within this context, this paper focuses on energy flexibility created by the thermal capacity of the
water contained in DH network pipes, referred to as network flexibility from now on. By temporarily
increasing/decreasing the supply temperature in the DH network, the network is charged /discharged.
This way, energy can be stored for a while, bridging the gap between heat generation and heat demand.
A detailed description of a typical network flexibility activation can be found in [6].

By solving an optimal control problem (OCP), two applications of network flexibility are
considered in this paper. There is operational heat pump optimisation in which the interaction
with the day-ahead market is optimised, and peak shaving in which the use of an expensive and/or
polluting peak unit is minimised [8-10]. In the literature, other applications of network flexibility can
be found: CHP optimisation [11-13], R2ES integration [14-16] and providing ancillary services [17].

However, the OCPs described in these studies all consider perfect predictions and perfect
knowledge of the system model and parameters. However, this is not the case in reality and the
OCP solution will deviate from the actual optimal control strategy. This study investigates the
influence of these deviations on the control performance. Before going into the novelty and the specific
research questions of this paper, the uncertainties that play a role in DH systems are introduced first,
followed by a discussion on robust control of energy systems with uncertainty: how to determine a
control strategy that can achieve a satisfactory result in (almost) all possible cases?

1.1. Uncertainties in district heating systems

Kim et al. [18] divided uncertainty into three categories. Model uncertainties are caused by a lack of
knowledge regarding the physical system and/or the necessity to simplify and neglect certain aspects
to keep the model solvable within acceptable time. Process uncertainties either refer to inaccurate
actuators and sensors, or to the inability to measure certain system states. Forecast uncertainties relate to
the imperfect forecasts made of system disturbances such as weather, electricity prices, R*ES generation,
etc.

One example is heat demand uncertainty, which is in fact the result of other uncertainties.
The main contributors are: user behaviour predictions, weather forecasts and unknown building
construction. Of these, the former two are related to forecasts, while the latter belongs to the model
uncertainties category.

To accommodate the user behaviour uncertainties, several tools have been set up to stochastically
generate user behaviour profiles describing indoor temperature set-points, electrical appliance usage,
internal heat gains and DHW use. These are mostly based on surveys and hence represent the typical
behaviour of a certain population. Such tools include StROBe [19], Strathclyde University Demand
Profile Generator [20], DELORES [21] and a Japanese activity-based modelling tool [22].

Regarding weather predictions, often weather servers that provide regular weather forecasts can
be used to analyse weather uncertainties. For example, by combining imperfect weather forecasts with
the corresponding measurements of the weather as it actually occurred, Oldewurtel [23] analysed the
influence of these uncertainties for building heating.

The final contribution to heat demand uncertainty is the imperfect knowledge regarding building
construction and building energy performance. Especially on district or city level, building energy
performance related data is often unavailable [24,25]. Due to the lack of detailed input data on building
level, archetype buildings are often used. Archetype buildings are buildings that are considered to be



80

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

926

97

98

29

100

Version October 16, 2020 submitted to Energies 3 of 24

representative for a larger group of buildings. As an example, the TABULA project defines archetype
dwellings, i.e. typical dwellings, for multiple European countries [26]. For Belgium, 30 archetype
buildings are characterised in terms of their geometry and U-values for roof, ground floor, exterior wall
and windows. Thanks to the rising popularity and availability of geographical information systems
and geospatial data, the building geometry of all individual buildings can be included within district
energy simulations. However, thermal quality data of the building envelope is still rarely available,
although they are collected in some countries for the calculation and allocation of building energy
performance certificates. Unfortunately, these data are often not shared due to privacy issues. To
overcome this issue, De Jaeger et al. [bijna gepubliceerde paper Ina] developed a method to estimate
the thermal quality of the building envelope based on construction year and geometrical data of the
building based on statistical data from the Flemish energy performance certificates database.

In this paper, only the last source of heat demand uncertainty, the imperfect knowledge of building
parameters, is discussed.

1.2. Robust control of energy systems

With these uncertainties, the optimal solution of a deterministic OCP may be far from optimal
for the actual system, leading to a reduced performance. Hence, OCPs have been reformulated in
the literature to integrate uncertainties and to reduce the associated risk. Three approaches can be
discerned, ranging in complexity.

Firstly, deterministic model predictive control (MPC) is a first step towards improved robustness.
In short, an MPC solves an OCP with a receding horizon, i.e. at frequent points in time the OCP is
solved with updated forecasts and system state measurements. The resulting optimal control strategy
is then applied to the actual system [27]. Although the embedded OCP still does not consider the
uncertainties, the regular update of relevant predictions and states ensures that the MPC control
actions can adapt through time, all the while trying to minimise the objective. This technique is applied
by Arnold and Géran [28] who alleviated prediction errors of electricity demand and R%ES generation
in an electricity system with connected TES systems. They analysed the MPC performance by running
Monte-Carlo simulations and concluded that the TES systems provided the MPC with an opportunity
to deal with most of the prediction errors, thereby preventing unplanned start-ups of plants.

A second approach uses stochastic modelling to determine the robust optimal control of a system.
This is done by incorporating probability distributions for the stochastic parameters into the OCP.
Different types of stochastic modelling can be found. In single-stage stochastic programming, all
control actions are decided at one instance. This is e.g. the case in chance-constrained programming.
Here, the chance that a certain constraint will be violated is limited to a certain extent. Bruninx et al. [29]
applied such a chance constraint problem to ensure that the energy demand in an electricity system
would be successfully generated and delivered in e.g. 95 % of the cases.

Two-stage optimisation problems are solved in two stages, as explained by Verrilli et al. [30]:
‘In two-stage stochastic programs, the decision variables are divided into two groups: the first-stage variables,
which have to be decided before the actual realisation of the uncertain parameters becomes available, and the
second stage or recourse variables, which can be decided once the random events occur. These recourse variables
are also interpreted as correction actions to compensate any infeasibility from the first-stage decisions.” This
technique has been applied multiple times. Wang et al. [31] applied it to the optimal control of a
building energy system. To test the robust optimal control problem, they compared it to an MPC
by running Monte-Carlo simulations of both controllers. They concluded the robust optimal control
and the MPC reached about the same performance, but the stochastic OCP could do so with a single
evaluation across the whole time horizon. Tian [17] optimised the operation of a CHP connected to
both the electricity system and a DH system with a two-stage stochastic problem. The goal was to
offer ancillary services and participate in the electricity spot market while the electricity demand is
uncertain. Interestingly, network flexibility is applied here to increase the CHP profits, yet no DH
system uncertainties were included.
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Other stochastic programming techniques found in the literature include scenario robust
optimisation, in which a number of carefully selected scenarios are combined [18] in one OCP. Options
to select such scenarios include Sample Average Approximations [30], Monte-Carlo sampling [32],
Latin Hypercube Sampling [18] and the point-estimate strategy [33,34]. Monte-Carlo least squares
regression analysis [35] and min-max optimisations (worst-case optimisations) have also been applied
for robust control of energy systems [36,37].

Finally, a third approach to reach robust control is by combining the first two: MPC and stochastic
optimal control. While Oldewurtel [23] integrated a chance-constrained program for building energy
system control into an MPC, Rantzer [38] and Verrilli et al. [30] both developed an MPC containing a
two-stage optimisation problem for DH system control.

This overview shows that plenty of research in robust control of energy systems has been done.
However, to the authors” knowledge, there has been no research yet in robust control of network
flexibility with respect to heat demand uncertainty or any other form of uncertainty in the DH system
itself. Hence, the exploratory study presented in this paper focusing only on the impact of building
parameter uncertainty provides a valuable contribution to the scientific literature.

1.3. Novelty and research questions

The main novelty of this paper is the assessment of building parameter uncertainties, leading
to an uncertainty in the heat demand magnitude!, impacting the network flexibility activation in
DH systems based on a deterministic OCP. Two applications of network flexibility are studied: 1)
operational heat pump optimisation in which the interaction of a central DH heat pump with the
day-ahead electricity market is studied, 2) peak shaving.

This study indicates how sensitive the optimal network flexibility activation is to the building
parameter uncertainties and hence a change in heat demand magnitude, and how much risk is
associated with adopting a control strategy based on wrongly estimated building parameters. This
paper shows whether simple measures can provide less risk and/or higher profits leading to a more
robust control strategy. It is a first step in estimating the importance of robust network flexibility control
and to the development of that robust control. The following research questions will be considered:

1. How does the optimal network flexibility activation (i.e. the control strategy) alter when the
building parameters are different?

2. How sensitive is the network flexibility performance to the applied control strategy (and hence
to uncertainty)?

3. Does this preliminary study lead to insights for a more robust activation of network flexibility?

In this paper, the considered case study is described first. Then, in Section 3, the methodology for
the optimal control, the uncertainty on the heat demand and the uncertainty analysis is introduced.
Subsequently, the results are presented in Section 4, followed by the discussion in Section 5. Finally;,
the conclusions are formulated in Section 6.

2. Case study: GenkNET

The influence of building parameter uncertainty on network flexibility is tested by optimising the
control of GenkNET. This is a fictive DH system based on the city of Genk, Belgium. To set up this case
study, steps 1-4 in Figure 1 were followed. First, the geometrical data from 7775 buildings located in
Genk were collected from a CityGML LOD2 model. Then, Genk was divided into 9 neighbourhoods
and for every neighbourhood the average construction year was determined by a Google Streetview
scan. To determine the user behaviour of the people inhabiting these buildings, user behaviour profiles

1 Uncertainty on the heat demand magnitude refers to a heat demand profile that has been scaled up/down with an uncertain

(time-variable) factor. The ‘magnitude’ term is used in this text to emphasise that there are no timing changes. For an
example of heat demand profiles that only have magnitude changes, please refer to Figure 5.
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(temperature set-points, internal heat gains, DHW use, etc.) were generated with the stochastic toolbox
StROBe [19].

GenkNET DATA COLLECTION

1. Collect geometry from CityGML LOD2 model for all buildings

2. Divide Genk into 9 residential neighbourhoods connected to the DH system
3. Estimate average construction year per neighbourhood

4. Allocate stochastic occupant behaviour based on StROBe

OPTIMISE NEIGHBOURHOOD HEAT DEMAND PROFILES CALCULATE UNCERTAINTY ON HEAT DEMAND PROFILES

5. Allocate building envelope parameters based on TABULA 9. Calculate 1 archetype per neighbourhood

6. Allocate stochastic occupant behaviour based on StROBe 10. Determine realistic input distributions for building

7. Optimise heat demand per building using modesto envelope parameters per archetype based on probabilistic

8. Sum heat demand profiles for all buildings in neighbourhood method
11. Sample building envelope parameters for 500 variants
per archetype
12. Simulate heat demand of each variant using IDEAS
13. Calculate CV(Q) per archetype based on LDC

14. Create 100 variants of heat demand profiles (step 8) using CV(Q) (step 13) per neighbourhood

15. Create 100 variants of GenkNET heat demand profiles by random selection of each neighbourhood
Figure 1. A flow chart describing the different steps taken to determine the GenkNET heat demand
profiles including uncertainties (relevant to both Sections 2 and 3).

To limit the computational complexity of this case study and to prevent the simultaneous
simulation of 7775 buildings, a thorough aggregation was carried out. Every neighbourhood in
GenkNET is now represented by one substation that has to deliver the heat demand of the entire
neighbourhood, neglecting the distribution network in a neighbourhood. For more details on this
aggregation, please refer to [6]. This leads to the DH system layout shown in Figure 2. The nominal
supply and return temperatures in this DH system are taken to be 57 °C and 37 °C, respectively. The
pipe sizes are determined by the sizing procedure presented in [6].
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Figure 2. The lay-out of the aggregated GenkNET, indicating the position of the 9 neighbourhoods.
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There is a single heat generation site in the north-east of the network. The network pipes are indicated
by the numbered lines.
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Instead of a whole year analysis, only a limited number of days is tested in this paper. To
select a representative set of days, two aspects are considered: 1) the overall heat demand, leading
to a distinction between winter and transitional (spring and autumn) days. The summer days are
not considered, as summer heat demands proved to be too low for interesting network flexibility
activations and hence interesting results. 2) The day-ahead electricity price profile can be either stable
and positive (small Ap,), volatile and positive (large Ape), or become negative during the day (negative
pe). The electricity price pe corresponds to the BELPEX day-ahead market prices in 2014. This leads to
a selection of 6 days, given in Table 1. These days will be referred to as <season>_<electricity price>,
according to the names of the columns and rows of Table 1.

Table 1. The nine days selected for the GenkNET case. These days will be referred to as
<season>_<electricity price>.

Heat demand Winter Trans(itional)

El price
Small Ape 16/01 29/03
Large Ape 14/01 17/11
Neg(ative) pe  16/02 16/03

In this paper, the heat generation unit is either a central air-to-water heat pump or a base/peak
plant combination. The six selected days account for different electricity price profiles which allow
to study different heat pump cases, as the operational heat pump optimisation heavily depends on
the electricity price variation through time. To study the base/peak plant combination in more depth,
different base load ratios are studied. The base load ratio r;, defines the capacity of the base unit Qp, max
relative to the peak heat demand of the analysed day Qdem,max, day- Three base load ratios are tested:
60, 80 and 95 %. Note that this will lead to base plant sizes that are different for every case (day and
base load ratio).

Qb, max
= ——"—— 1
Qdem,max, day

3. Methodology

This section presents the methodology used. Firstly, it discusses the optimal control problems
that will be solved in this study. Secondly, the set-up of the heat demand profiles with uncertainty is
presented. Finally, the methodology of the uncertainty analysis to assess the influence of the building
parameter uncertainty on network flexibility is described.

3.1. Deterministic optimal control

To determine the optimal network flexibility activation, the toolbox modesto [39] is used. It
contains a library of (non-linear) DH component models, including pipe, substation and heat generation
models. The models as they are used in this study are presented in Appendix A. These models were
developed specifically for determining optimal network flexibility activations. Hence, these models are
suited to model the temporary network temperature changes in the DH network and the corresponding
energy storage that take place during a network flexibility activation. For more information on the
interactions that take place during a network flexibility activation, we refer to [6]. However, note that
the models are completely deterministic and do not take into account any uncertainties.

modesto can automatically assemble the GenkNET DH system optimisation model based on
its topology and a selection of models and optimisation objective. For each considered case, the
network topology remains the same, yet the heat generation site and optimisation objective is changed
depending on the studied case. In case of heat pump or peak shaving optimisation, either a heat
pump model or a base/peak plant model is included. The optimisation objective depends on the heat
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generation site, Equations 2 and 3 show the objectives Cpyp and Cpg for the operational heat pump and
peak shaving optimisation, respectively. In these objectives, W is the electrical work done by the heat
pump to generate the heat, pe(i) is the day-ahead electricity market price during time step i, expressed
in €/kWh,], At is the time step between two points in time in the discretised OCP with a total of N
time steps. Qp, and Qp, are the heat delivered by the base and peak plant unit, respectively. Similarly,
pp and pp are the prices of the heat generated by both units. They are expressed in € /kWhy, and are
constant in time. This price already includes the plant energy efficiency. In this study, only the ratio
between the two prices is imposed, equal to p / pp, = 2 [40].

N
Crp = ) pe(i) Wit 2)
i-1
N . .
Cps = Y _(PoQb,i + PpQp,i) At 3)
=1

The price of heat generation by the base unit is lower than that by a peak unit. Hence, the peak
shaving objective causes a preference for the base unit and incentivises peak shaving. The heat pump
objective incentivises heat generation on moments during which the electricity price is low. In this
study, network flexibility is the only available tool in the OCP to create energy flexibility. By running
the optimisation twice, once with network flexibility available, i.e. the supply temperature may change
between its nominal value and a value that is 10 °C higher, and once with no network flexibility
available, i.e. the supply temperature leaving the plant must remain equal to the nominal value, the
network flexibility activation can be isolated. A more elaborate explanation on this workflow can be
found in [41].

The OCP settings and models are elaborated on in Appendix A.

3.2. Heat demand profiles

Following the process in Figure 1 (steps 5-15), heat demand profiles containing building parameter
uncertainties can be set up.

In a first part (steps 5-8), the heat demand profile for every neighbourhood in GenkNET is
determined based on a minimum energy use optimisation. Starting from the geometries of the 7775
buildings in Genk (step 1) and the neighbourhood construction year (step 3), building parameters are
allocated to each building based on the TABULA archetype U-values [26]. Based on this data and the
StROBe user behaviour profiles (step 4), van der Heijde calculated the building heat demand profiles
[42], based on the 4" order TEASER RC-model [43]. For this he used the typical meteorological year
of Uccle, Belgium. To calculate the heat demand profiles, van der Heijde made use of modesto to
determine the heat demand profile that ensures thermal comfort with minimum energy use in every
building. Finally, to reach one heat demand profile per aggregated GenkNET neighbourhood, the heat
demand profiles of buildings belonging to one neighbourhood are summed.

In a second part (steps 9-13), the uncertainty on the heat demand profiles is calculated. To reduce
the computational burden, the uncertainty in each neighbourhood is determined through the use of
archetype buildings. The archetype building for a neighbourhood is characterised by the estimated
average construction year of the neighbourhood (step 3) and the average building geometry. To obtain
the average building geometry, the geometry of all buildings is required (step 2). The areas of the
facades and roofs are merged towards 4 orientations (N, E, S, W), with a negligible loss of accuracy
[44]. This simplifies calculating the average. This procedure is repeated for every neighbourhood and
results in nine archetype buildings.

For these nine archetype buildings, distributions on the U-values of the roof, ground floor, exterior
wall and windows are introduced along with variations on the window-to-wall ratio, based on the
method of De Jaeger et al. [toekomstige paper Ina]. These distributions are estimated to be as realistic
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as possible considering the scarcely available data of Genk [toekomstige paper Ina]. Note that building
geometry is assumed to be known perfectly, as are user behaviour and weather predictions.

Using these distributions, 500 versions of every archetype building are generated. The
distributions of all (9x500) generated building parameters can be seen in Figure 3. Next, yearlong
simulations of the archetype buildings are carried out in Modelica using the IDEAS model library
[45]. These simulations entail a 2-zone white-box model of the SH system consisting of ideal radiator
heating. The user behaviour and weather as they were described in Section 2 are applied. This leads to
the distribution in annual SH heat demand in GenkNET shown in Figure 4.

Based on the simulation results, load duration curves (LDC) of every variation are set up. The
coefficient of variation? (CV) for one archetype was found to change in function of the expected SH heat
demand of that building Qarch, sH,u- Furthermore, the CV could be well estimated by an exponential
in function of the expected SH heat demand of the archetype building, with a, b and c the fitting
parameters that depend on the neighbourhood.

CV(Qarch, SH,y) =4a exp( _anrch, SH,y) +c (4)

By stating that the archetype building heat demand is the average building heat demand in a
neighbourhood with N, buildings and expected heat demand QSH,;u the following expression for CV
can be set up for each neighbourhood:

- QsH,
CV(Qshyu) = aexp(—bTﬂ) +c (5)
b
_ 800- 1000 - 1000 - 1500 -
600 -
@] _ 750 - 750 -
g 600 1000 -
% 400 - 500 - 400~ 500 -
£ 500 - h 250 - 200 - 250 - 200~ H
0 '|J{ ] 0 _IM 0 1 ] 0 - [ [ O '[ (I 1
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Figure 3. Five histograms showing the building parameter distribution in the nine GenkNET
neighbourhoods, according to the 9x500 variations.
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Figure 4. A histogram showing the distribution of the annual GenkNET heat demand, according to the
500 variations.

In a third part (steps 14-15), the uncertainties (steps 9-13) can be added to the optimal heat demand
profiles (steps 5-8). Based on the exponential curves describing the CV, new SH heat demand profiles

2 The coefficient of variation is the ratio of the standard deviation to the mean of a distribution: o/ .
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for each neighbourhood in GenkNET are set up. To do so, a normal distribution is assumed, which
has been used in the literature before to describe building heat or electricity demand distributions
[23,29,32,38,46]. Considering the distribution in Figure 4, this seems a reasonable assumption. This
allows the use of the following quantile function:

FYp)=p+ov2erf1(2p—1) (6)

For a normally distributed variable, F~!(p) is the value of the variable for which there is a
probability p such that F~(p) is greater than or equal to the variable. In this equation, y and ¢ are the
expected value and standard deviation of the variable, and erf ! is the inverse error function.

To set up the SH heat demand profile of version v, the following is done. The value for p is
randomly selected from a uniform distribution between 0 and 1. Then, starting from the optimal SH
heat demand profiles (steps 5-8) [42], at every point in time the quantile function is applied along with
the CV that corresponds to the expected heat demand QSH,y,i at the point in time i:

Qst,0,i(P) = QsH i (1 + CV(Qsppi) V2erf ! (2p — 1)) @)

This process yields curves that are scaled by a factor changing through time, with the factor
depending on the heat demand at that time.

An additional step is added to introduce a small amount of random behaviour. Following the
autoregressive process AR(1), an extra term was added to the heat demand profile. This term has an
autocorrelation of 0.75 between two subsequent points in time separated by 15 minutes and it has a
standard deviation of 3 % of Q'SH,;,J, following the prediction error analysis in [47].

This way, 100 different SH heat demand profiles are generated for every neighbourhood. To end
up with 100 different versions of GenkNET, one generated profile of every neighbourhood is grouped
together. This grouping was done fully at random, although it could be argued that there might be
correlations between neighbourhoods, e.g. if the U-values were underestimated in one neighbourhood,
chances are that this happened in other neighbourhoods as well. However, this effect is not included
here.

No uncertainty was added to the DHW heat demand, so these are simply added to the different
SH heat demand profiles. Finally, the left of Figure 5 shows the heat demand of GenkNET of all 100
versions for the Trans_Negp, day. The right graph shows 11 selected profiles, spread over the entire
range. Note that the range in variation is similar to that shown in Figure 4, with about a factor 2
between the most extreme cases. The extra random changes that were added to the profile have little
effect and do not change the overall behaviour.

3.3. Uncertainty analysis

To analyse the influence of heat demand magnitude uncertainty on network flexibility activations,
three steps are taken, which are described below.

3.3.1. Step 1: Optimal control of each GenkNET version

With 100 possible versions of GenkNET created, the optimal control strategy of every version can
be calculated. By solving the OCP twice, once with and once without network flexibility, referred to as
the Flexibility and Reference cases, the optimal network flexibility activation can be isolated. Six days
(see Table 1) will be analysed with respect to operational heat pump optimisation, and peak shaving
for different base load ratios (60, 80 and 95 %).

This leads to 100 optimal network flexibility activations for GenkNET, based on heat demand
profiles that differ mostly in amplitude. This step will show how the optimal control changes as the
heat demand magnitude changes.
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Figure 5. The different heat demand profiles of GenkNET for the Trans_Negp. day. The black line
indicates the expected heat demand.

3.3.2. Step 2: Selection of 11 control strategies

All GenkNET versions are ordered from low to high annual heat demand. Using this ordering,
every tenth profile is selected, corresponding to the selection in Figure 5b. Hence, when ordered
according to the annual heat demand, versions 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 are chosen.
These versions will be named by these numbers in the remainder of this study, with 0 corresponding to
the GenkNET version with the lowest annual heat demand and 100 to the one with the highest annual
heat demand. Note that the ordering of the profiles is the same for each of the six days and any other
variation that is analysed in this study.

3.3.3. Step 3: Applying the 11 control strategies to all 100 GenkNET versions

Finally, the optimal control strategies of the 11 versions selected in the previous step are applied to
all 100 GenkNET versions. This leads to 1100 evaluations of GenkNET for one day and one optimisation
case. This step shows how the optimal control performance changes when the ‘predicted” and “actual’
heat demand differ from each other.

4. Results

The results are split up into a discussion of the optimisation of heat pump operation and peak
shaving optimisation and are presented below.

4.1. Operational heat pump optimisation

The operation of the heat pump is optimised to achieve the lowest possible electricity costs to
drive the heat pump while delivering the heat demand to the customers. The electricity prices are
based on the 2014 BELPEX day-ahead electricity market.

4.1.1. Optimal control of the 11 selected versions

In Step 1 of the uncertainty analysis, the optimal control strategies of all 100 versions of GenkNET
were calculated. Figure 6 shows the optimal control of the 11 selected versions on the Winter_Negp.
day (a winter day with an electricity price that becomes negative). These 11 versions are spread out
over the entire range of heat demand magnitudes and give a good overview of the optimal control



363

364

365

367

368

Version October 16, 2020 submitted to Energies 11 of 24

of all versions. Figure 6 shows that the network is charged three times: during the two negative
price periods and before a large change in electricity price. With the COP reducing when the supply
temperature is increased, which is inevitable when activating network flexibility, these are the only
moments when network flexibility is profitable. In Figure 6, the Flexibility and Reference case refer to
the cases in which network flexibility is available and in which it is unavailable, respectively.

Line style
—— Flexibility
------ Reference

GenkNET version

— 0
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50
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— 100
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Figure 6. For the Winter_Negp, day, the results of the operational heat pump optimisation for the 11
selected GenkNET versions are shown. From top to bottom, the electricity price, the supply temperature
at the plant, the heat injection and the heat injection response (the difference between the Flexibility
and Reference case) are shown. The negative price periods are indicated by the dark grey zones.

During the first negative price period, there is a substantial difference between the supply
temperature pulses of the different GenkNET versions, whereas the pulses are nearly identical in the
second negative price period. The differences in the first period are likely caused by the second period
that follows shortly after. In the low heat demand versions, the water travels so slowly that charging
the network during the first negative period causes the network to discharge during the second, more
interesting, negative period, causing a loss in profits. In the high heat demand versions, the water
travels faster and the discharge has ended by the time the second negative period starts.

When there is a large price difference, the supply temperature pulse remains similar in all cases
but starts earlier as the heat demand reduces, again a consequence of the lower water speeds in the
network. Hence, the general actions are largely based on the electricity price profile and remain
similar throughout all versions. However, the exact timing can change considerably, with pulse lengths
doubling as the heat demand becomes lower. Note that the third pulse always ends at the same point
in time, namely when the price increase is taking place.

4.1.2. Applying 11 different control strategies to all 100 GenkNET versions

In Step 3, the optimal supply temperature profiles in Figure 6 are applied to all 100 versions. This
leads to 1100 evaluations for each day, which are presented in Figure 7. Only the three days during
which there is a significant network flexibility activation are shown: Winter_Negp,, Trans_Negp. and
Trans_LargeAp,. For each of the 11 selected control strategies, a box plot is set up. The box plot presents
the profit of applying the selected control strategy to all GenkNET versions. Studying the median value,
it seems that every optimal control strategy achieves a similar profit on average. On the Trans_Negp.
and Trans_LargeAp, days, the spread on the profits remains similar as well, regardless of the control
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strategy. The profits are symmetrically spread around the median and show a possible deviation from
the median profit of about 20 % and 33 % on Trans_Negp. and Trans_LargeAp,, respectively.

Winter_Negpe
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Control strategy

Figure 7. Box plots of the profits obtained with the 11 selected control strategies on all GenkNET
versions for three different days. The box plots shows the median, first and third quartile and the
minimum and maximum (excluding outliers) of a data set. The outliers are represented by the diamond
markers.

On the Winter_Negp,. day, the profit variation decreases as higher optimal control strategies are
applied. Looking back at Figure 6, this is likely caused by the quick succession of two negative price
periods. When a higher heat demand is predicted, a large supply temperature pulse is applied during
the first negative period. If the actual heat demand is lower, the discharge phase is taking place during
the more interesting second negative price period, limiting the profits. Vice versa, if a low heat demand
is predicted, but it turns out to be high, the first negative price period was only covered by a small
temperature pulse. The spread in profits for control strategies 0 and 100 can be seen in Figure 8, which
also shows the difference with the actual optimal solution. It seems that an optimal control strategy
based on a different heat demand prediction can lead to a profit reduction by up to a factor 2.

From the cases studied here, it seems that the risk related to heat demand magnitude uncertainty
can cause a reduction in profits, yet there was no risk of losing money (negative profits). In general,
the control strategy remained similar in all cases, as the control strategy mostly aims for moments with
a negative price or with large price changes. The heat demand at those times seems less important.

4.2. Peak shaving optimisation

In the peak shaving optimisation, two plants are available to generate the heat. The base unit can
generate heat cheaply but does not have a heat output sufficiently large to deliver the heat demand
peaks. The peak unit can cover the peak but at a higher cost. To minimise the cost of heat generation,
peak shaving is hence applied by activating network flexibility.
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Figure 8. On the x-axis the heat demand during the Winter_Negp. day is shown, on the y-axis the profit
that was obtained. Every dot represents one version of GenkNET managed by one control strategy,
the colour and marker shape indicate the applied control strategy. One version will always have the
same heat demand, regardless of the applied control strategy. The vertical dotted lines show the heat
demand that correspond to the 0 and 100 control strategies.

4.2.1. Optimal control of the 11 selected versions

Figure 9 shows the optimal control results of the 11 selected profiles when the base unit can deliver
95 % of the expected peak heat demand, with a peak-base price ratio of 2 on the Winter_LargeAp, day.
It shows that the versions with a lower heat demand do not require any network flexibility, while those
with a higher heat demand do not succeed in shaving the entire peak. For the versions with the highest
heat demand, an additional large supply temperature pulse appears at the end of the peak period. As
was explained in [6], a flexibility activation takes place in several phases. First, the network is charged,
then it is discharged and at the end a rebound takes place. The rebound compensates the part of the
discharge that was not covered by the initial charge. In the last network flexibility activation at the end
of the peak period in Figure 9, the initial charge and discharge are both covered by the peak unit, but
the rebound is covered by the base unit, effectively moving a small amount of energy from the peak
unit to the base unit.
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Figure 9. For the Winter_LargeAp. day, the results of the base-peak plant optimisation for the 11
selected GenkNET versions with a base load ratio of 95 % are shown. From top to bottom, the supply
temperature at the plant, the heat injection and the heat injection response are shown. In the middle
graph, the maximum heat output of the base unit is indicated by the grey horizontal line.
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The differences between the different control strategies are clearly larger than for the operational
heat pump optimisation. Hence, it is expected that larger ranges of profits (and losses) will appear
when applying these strategies to all 100 versions.

4.2.2. Applying 11 different control strategies to all 100 GenkNET versions

Figure 10 shows the peak energy that could be avoided in all 100 versions with 11 different control
strategies. This is done for the Winter_LargeAp, and Trans_SmallAp, days for base load ratios of 60, 80
and 95 %. The variation in avoided peak energy has a much larger range than the profit range found
for the operational heat pump optimisation. When comparing base load ratios different trends can be
observed.
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Figure 10. Box plots of the avoided peak energy with the 11 selected control strategies on all 100
versions of GenkNET for Winter_LargeAp, and Trans_SmallAp, and for different base load ratios.

Starting on the right of Figure 10 with a base load ratio of 95 %, the lower control strategies cannot
accomplish anything at all. Looking back at Figure 9, no network flexibility is required when the heat
demand is low, hence there is no network flexibility activation. Going to the higher control strategies,
the average peak energy that can be avoided increases as does the possible range, although it always
remains mostly positive, i.e. very little to no extra peak energy had to be generated even in the worst
case for Trans_SmallAps,.

However, the highest control strategies on Winter_LargeAp, cause extra amounts of peak energy
to be generated in many cases. Here, a second large temperature pulse at the end of the peak period
has appeared (see Figure 9). This type of network flexibility appears to entail a large risk, as illustrated
in Figure 11. If this second pulse is applied to a case with a lower heat demand in which the peak unit
is not active at that time, the peak unit might have to be (re)activated to deliver this pulse while the
base load is later on reduced, e.g. in version 50. This increases the delivered peak energy substantially.
It seems that in case of a large base unit and heat demand magnitude uncertainties, it is better to
overestimate than underestimate the heat demand, but to avoid a network flexibility activation at the
end of a peak period.

Going to a base load ratio of 80 %, a similar pattern appears, yet everything has shifted to the left;
the base unit must now be activated more quickly. The Winter_LargeAp, day again shows a risk to
generate more peak energy when going to higher control strategies. Again, this is caused by a network
flexibility activation at the end of a peak period. This extra pulse has disappeared again at the highest
control strategy, which shows no risk to increase the peak energy. The 80 % case shows a clear best
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Figure 11. The application of control strategy 100 on a GenkNET version with low (0), medium (50) and
high (100) heat demand on the Winter_LargeAp, day with a base load ratio of 95 %. The maximum base
unit heat generation is indicated by the horizontal grey line.

result in the intermediate control strategies. For these strategies, the heat demand was high enough
that peak shaving is required, but not that high that the peak unit must be active (nearly) all the time,
limiting chances for network flexibility.

In case of 60 %, another shift to the left has occurred, the peak unit is now activated even in case
of the smallest heat demand. The average avoided peak energy now remains very constant up to the
highest control strategies. Here, it decreases again, as hardly any network flexibility is activated any
more. The heat demand has now become so high that the base unit must be active (nearly) all the
time. Although the range of possible peak energy avoided can be large, there is little risk, i.e. the
delivered peak energy will not increase. It seems that in case of a smaller base unit, it would be safe to
underestimate the heat demand when deciding a control strategy.

To better understand what occurs when the heat demand changes and what influence the different
control strategies have, Figure 12 shows the peak energy that could be avoided for all GenkNET cases
in six days for a base load ratio of 95 %. For each GenkNET version, the result of four different control
strategies is shown: the optimal control strategy of that version, the result when the lowest and highest
heat demand are ‘predicted” and lastly a control strategy that follows the recommendations from
before. For a base load ratio of 95 %, it seemed advisable to select a control strategy corresponding to a
higher heat demand, without going too high. Hence, control strategy 70 is selected.

The optimal control solutions (black dots) in Figure 12 show some interesting results. With low
heat demands, there is no need for peak shaving and hence no peak energy can be avoided either.
After a while, the avoided peak starts increasing, until on most days a maximum is reached. This
maximum corresponds to the maximum energy storage capacity of the GenkNET network (estimated
to be 36.8 MWh)?. When this maximum is exceeded, there are multiple peaks and network flexibility
activations during one day, e.g. a morning and evening peak. These extra peaks appear and disappear
as the heat demand magnitude changes.

3 This number was estimated by calculating the total water mass in the GenkNET network, see Figure 2, and multiplying this
mass with the specific heat capacity of water and the allowed temperature increase of 10 °C.



Version October 16, 2020 submitted to Energies 16 of 24

Winter_SmallApe Winter_LargeAp, Winter_Negpe

~
wu

U
o

fb‘.oo. . "’""\o‘? O f""‘ff:; '
& e W o,
o i KEdw L :::::;:;_" e wone * 4@ @oaas ,"’Mﬂﬁk *
5; . k

-ﬁ H . H g

o
n
n
n
ST AT

AE peak IMWh]
N
(6]

=25 : :
2000 3000 4000 2000 3000 4000 1500 2000 2500 3000
Trans_SmallApe Trans_LargeAp. Trans_Negpe
- "B “ i 5 B
£ ‘e .4
S 50 fd ° :
z P L B ghge e Vet
¥ 25 S f : ¢ sk £
8_ "/; ; i : {; .
LqLJ 0 ¢crec 7 AN Ak e ¢ QOO A e * cf:::::if’ o k&
-25 : : i :
1000 1500 1000 1500 2000 1000 1500
Heat demand [MWh] Heat demand [MWh] Heat demand [MWh]

Control strategy
e Optimal + 100 * 0 70

Figure 12. On the x-axis the total heat demand during each day and each version is shown, on the
y-axis the peak energy that was avoided with a control strategy. Every dot represents one version of
GenkNET managed by a different control strategy. The vertical dotted lines show the heat demand that
correspond to the shown control strategies.

Of all control strategies, the optimal control strategy (black dots) reaches the best result in all
cases, as is expected. Control strategy 0 cannot avoid any peak energy, as it does not activate network
flexibility. Control strategy 100 can accomplish a reasonable result on the transitional days, noticing
the afternoon peak that occurs with the highest heat demands on Trans_Negp.. However, on the winter
days, it attempts to activate network flexibility at the end of a peak unit activation, which is risky in
case the heat demand turns out to be lower. Lastly, when control strategy 70 is applied, it can in most
cases follow the optimal strategy very well. It only misses the afternoon peak of Trans_SmallAp, and
Trans_Negp.. On Winter_SmallAp,, its performance decreases with increasing heat demand. Here, the
peak period moves significantly through time as the heat demand changes. In case of the highest heat
demands, the peak has already started by the time case 70 starts charging the network. This implies
that changes in peak timing will complicate the selection of a robust control strategy even further.

Remember that each GenkNET version is composed of nine neighbourhoods, of which the heat
demand variation was chosen at random and independently of the other neighbourhoods. This means
that two GenkNET versions with equal total daily heat demand, could have a different distribution
of heat demand throughout the nine neighbourhoods and a different reaction to the same supply
temperature pulse. Yet, in Figure 12, all points show clear trends. It seems that a different heat
demand distribution amongst the GenkNET neighbourhoods does not influence the network flexibility
activation that much with the currently imposed building parameter distributions.

5. Discussion

This study investigates how optimal control changes when the building parameters and hence the
heat demand magnitude changes and how the control performance changes when a control strategy
based on a different “predicted” heat demand is applied.
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5.1. How does the optimal network flexibility activation change when the building parameters/heat demand
magnitude changes?

When the heat demand changes so do the mass flow rates and the network flexibility timing. This
is an effect that is visible in the operational heat pump optimisations, although its influence is limited
when electricity prices become negative. Only in certain circumstances when multiple negative price
periods follow each other shortly, the heat demand magnitude may influence the network flexibility
activation to a larger extent.

In case of peak shaving, not only the mass flow rates in the system are important, so is the
magnitude of the heat demand with respect to the maximum heat output of the base unit. This can
largely influence the network flexibility activation. With a low heat demand, it may be that there is no
need for peak shaving, while with a high heat demand network flexibility is not sufficient to shave the
entire peak.

5.2. How does the network flexibility performance change when the control strategy changes?

There was relatively little difference in the performance of different control strategies for
operational heat pump optimisation.The resulting (average) profits were rather independent of the
applied control strategy. Again, in the considered cases it seems that the electricity price timing is at
least as important as the heat demand magnitude. Only in special cases (with multiple negative price
periods), a significant difference in control strategy performance could be noticed. Hence, for the case
of GenkNET with variations on building parameters, operational heat pump optimisation does not
present much risk. A minimum profit could be guaranteed in all cases.

For peak shaving, another observation can be made. The control strategies were highly dependent
on the heat demand magnitude. Yet, an analysis of their performance (i.e. the peak energy that could
be shaved) showed that the studied heat demand uncertainty does not introduce much risk. With most
control strategies, the generated peak energy remained the same or decreased. In the few cases that
network flexibility accomplished a result worse than the Reference case, this was caused by a network
flexibility activation at the end of a peak period, or by a large change in the start time of a peak period.
This does suggest that uncertainties in timing (related to user behaviour and weather), may induce
larger risks.

5.3. Does this preliminary study lead to insights for a more robust activation of network flexibility?

For operational heat pump optimisation, it seems electricity price related uncertainties may be
more relevant. Future research should look into this type of uncertainty in more detail to conclude what
measures are required to achieve a more robust network flexibility activation. For now, considering
only building parameter uncertainties, there seems to be little risk in selecting a control strategy.

For peak shaving, if only heat demand magnitude uncertainties are expected, a recommendation
for peak shaving can be made based on the results gathered in this paper. The losses associated with
activating network flexibility needlessly are limited, while the possible gains are substantial. Hence, it
seems better to activate too much flexibility, instead of too little. Only the activation at the end of a
peak period should be avoided as it introduces a risk of generating more peak energy.

5.4. Remarks

This study only considers uncertainties on building parameters. Yet, in reality, these uncertainties
may be the least problematic with respect to control. As building parameters do not change, the
errors in heat demand predictions caused by them can be corrected over time. By contrast, the user
behaviour and weather do change over time and may be much harder to deal with. However, for
building parameter data, realistic data distributions could be set up and analysed.

The plant models are simple and do not contain all relevant aspects. For example, the peak
unit may require start-up and shut-down costs. These costs increase the risk associated with heat
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demand uncertainties, as a small peak unit activation may cost much more than was assumed now.
Additionally, it was assumed that the base unit can increase the network supply temperature without a
reduced efficiency. If the efficiency depends on the supply temperature, this may alter the conclusions
made before. Similar things can be said for the heat pump, for ramping limits and costs, etc. A future
study should look into these aspects.

The building heat demand profiles were built with small random variations, along with
uncorrelated building parameter uncertainties between the neighbourhoods. The results suggest
that these aspects have little influence, as the scatter plots of Figures 8 and 12 showed clear trends
when ordering the different versions according to the total heat demand during the day. This would
indicate that 1) small (random) heat demand variations may not be that important. Hence, predictions
may not need to go in great detail, although the extent of this should be investigated. 2) The distribution
of the heat demand among the neighbourhoods may not have such a large influence either, although
the different neighbourhood locations in the network do influence the network flexibility activation
timing. Again, this is another aspect that merits further study.

6. Conclusion

This study evaluates the influence of building parameter uncertainties on network flexibility
performance. This is done by determining and analysing distributions for building parameters in the
city of Genk, Belgium. This led to 100 different profiles describing the heat demand in a fictive DH
system in Genk. These heat demand profiles differ mostly in magnitude, not in timing. The optimal
control strategy applying network flexibility for these different heat demand profiles was calculated
for operational heat pump optimisation and peak shaving. Additionally, control strategies that are
optimal for one heat demand profile were applied to all others, to study the influence of an incorrect
heat demand prediction.

Analysis of these results shows that building parameter uncertainties do not influence operational
heat pump optimisation much, and could reach an average profit that is similar regardless of the
applied control strategy. For peak shaving, the heat demand magnitude matters much more, as it is
the main factor that determines a peak unit activation. Yet, here the risk remains limited, hence a large
network flexibility activation to prevent a possible peak period seems advisable.
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CHP Combined Heat and Power
Ccv Coefficient of Variation

DH District Heating

DHC  District Heating and Cooling
DHW  Domestic Hot Water

LDC Load Duration Curve

MPC  Model Predictive Control
OCP  Optimal Control Problem
R2ES  Renewable and Residual Energy Sources
SH Space Heating

TES Thermal Energy Storage

Appendix A. Optimal control component models and settings

This appendix shortly presents the component models included in the OCP solved in this paper,
along with the optimisation settings. For a more detailed overview of the applied optimal control
problem, please refer to [48].

Appendix A.1. Pipe model

The pipe model is an explicit transient first-order upwind finite volume model, as has been used
before in the literature [49-56]. The energy balance of one finite volume is described in Equation A1.
my is the mass of water in one finite volume, ¢}, is the specific heat capacity of water, i and k are indices
indicating the time step and the finite volume, respectively. Tj is the temperature of one finite volume
at one instance in time, At is the length of the time step, 1 is the mass flow rate through the pipe, Ty is
the ground temperature and R is the thermal resistance between water and surrounding ground.

Tg — Tiq, x
R

To account for the wall thermal inertia, a correction at the end of a pipe has been added. This

myCp(Ti k — Tieq, k) + 1ticp A (Tiq, k — Ticq, k1) = At (A1)

correction is given in Equation A2 and follows the technique presented by Benonysson [57]. Here,
Tc/)ut,i is the temperature exiting the pipe corrected for the wall thermal inertia, while Ty ; is the
temperature exiting the pipe as calculated by the finite volume model. Cpipe is the thermal capacity of
of the pipe wall, Ty, « is the pipe wall temperature. The wall temperature is updated through time

by Equation A3

T Tout, iMiCpAt + CpipeTwall, i-1 (A2)
out, i Cpipe + T’i”liCpAt

Twall, i Tc/)ut, i (A3 )

This finite volume model is only stable if the following condition related to the spatial and

temporal discretisation is met:

ult
= <

In this equation, u is the speed of water through the pipe and Ax is axial length of a finite volume.
The closer CFL is to one, the less numerical diffusion takes place and the more accurate the model is.
Similarly, the finer the discretisation is, i.e. the smaller Ax and At are, the more accurate the model is.
However, a finer discretisation causes a quadratic increase in calculation time. To discretise, a careful
selection of the spatial discretisation (Ax) and temporal discretisation (At) were made such that the
accuracy is sufficiently high and the problem remains solvable within an acceptable time. The model
accuracy was tested by comparing it to Modelica simulations of both a validated pipe model [58] and



603

604

605

606

607

608

609

616

617

619

620

621

623

624

Version October 16, 2020 submitted to Energies 20 of 24

a GenkNET DH system model consisting of detailed component models. For more information, please
refer to [48].

Appendix A.2. Substation model

The substation model that is included in the OCP is the No HEx model derived and described
in [6]. This model is based on a substation with two heat exchangers, one for space heating (with
radiator heating) and one for domestic hot water (DHW). Although the building heating system and
the heat exchangers are modelled, the heat demand profiles are determined in advance [42], hence
no building structure model is included. The No HEx model is a simplified version of the original
detailed substation model. No HEx only includes a 2D look-up table that gives the primary return
temperature exiting the substation in function of the space heating and DHW heat demand and the
incoming primary supply temperature.

Again, this model was tested and verified by comparing it with simulation of a GenkNET DH
system model consisting of detailed component models.

Appendix A.3. Heat pump model

The GenkNET central heat pump is an electric air-to-water heat pump. An important parameter is
the coefficient of performance (COP). This is the ratio of Qgen the heat supplied to the DH system to W
the electrical power required.
Qgen
W

COP = (A5)

Representing a heat pump by a Carnot cycle, the COP can be expressed as a function of the
condenser and evaporator temperatures, corresponding to Tgen, sup and Te, the DH supply and ambient
air temperatures, respectively. As real heat pumps do not follow the ideal Carnot cycle, an additional
efficiency #¢ is introduced, taking the value of 0.6 [42]. #¢ incorporates the efficiency loss due
to non-adiabatic compression, isenthalpic expansion, non-isothermal heat exchange, etc. The air
temperature T, corresponds to the typical meteorological year in Uccle (BE).

Cr— = (A6)
7 Tgen,sup - Te
The plant then delivers heat to the DH system, according to Equation A7, with ritgen, Tgen,sup and
Tgen, ret the DH mass flow rate, supply and return temperatures at the plant, respectively.

Qgen = mgencp(Tgen,sup — lgen, ret) (A7)

The following constraint to limit temperature ramping is added:

—10°C —-10°C
mAt S Tgen,sup,i - T At

gen, sup,i-1 > 3600 s (A8)

This equation limits the supply temperature changes between two points in time (i and i-1),
separated by At seconds in accordance with EN 13941 [59]. Additionally, the supply temperature can
only change between the nominal value Tsyp, nom and a temperature that is 10 °C higher, giving it the
required degree of freedom to activate network flexibility:

Tsup, nom S Tgen, sup S Tsup, nom + 10 OC (Ag)

The heat output is only constrained to be positive, as in Equation A10. There is no maximum
value the heat output can take, nor any limit on how fast the heat output can increase. However, with
the temperature ramping constraint in place and the GenkNET heat demand profiles determined in
advance, the values the plant heat output can take will at all times be acceptable.
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0 < Qgen (A10)

Appendix A.4. Base and peak plant model

In a second possible heat generation site, a base and peak plant work together. The base plant is
cheap, but has a maximum heat output that is insufficient to deliver all heat demand. The peak plant
is more expensive, but can supplement the base heat output to deliver all heat demand. In this case
peak shaving could reduce operational costs.

The base and peak plant are modelled as follows:

Qgen = Qb + Qp = mgencp(Tgen, sup — Tgen, ret) (A11)

with Qgen the total heat generated by both base and peak plant and Qy, and Qp is the heat generated
by the base and peak unit separately.

Along with the constraints in Equations A8 and A9, the following limits on heat output are also
included:

0< Qb < Qb, max (AlZ)
0< 0y (A13)

The base plant heat output is limited by Q}, max- The peak plant, just like the heat pump, does not have
any limit on the maximum power output. Again, the heat output will be limited due to the pre-defined
heat demand profiles and supply temperature constraints.

Appendix A.5. Optimal control model settings

The horizon of the optimisation problem is 24 hours, with a time step that changes through time,
but is always smaller than 5 minutes. Each pipe in the network contains at least 3 and at most 22
finite volumes. These measures keep the CFL-number as close to 1 as possible and the problem size as
limited as possible. The combination of all component models previously presented with mass and
energy balances, leads to a non-linear program that is solved in modesto [39] with ipopt [60].
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