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Abstract: Network flexibility is the use of the thermal capacity of water contained in the district1

heating network pipes to store energy and shift the heat load in time. Through optimal control,2

this network flexibility can aid in applications such as peak shaving and operational heat pump3

optimisation. Yet, optimal control requires perfect predictions and complete knowledge of the4

system characteristics. In reality, this is not the case and uncertainties exist. To get an insight in the5

importance of these uncertainties, this paper studies the influence of imperfect knowledge of building6

parameters on the optimal network flexibility activation and its performance. It is found that for the7

optimisation of heat pump operation, building parameter uncertainties do not present large risks.8

For peak shaving, a more robust result can be achieved by activating more network flexibility than9

may be required.10

Keywords: district heating, optimal control, heat demand flexibility, building parameter uncertainty,11

robust control12

1. Introduction13

To limit air pollution and green house gas emissions, a fundamental change in our energy system14

is required. In 2019, heating and cooling in the tertiary and residential sectors were responsible for15

41.7 % of the total final energy use in the EU28 [1], while 79 % of energy used in European households16

went to space heating (SH) and domestic hot water (DHW) [2]. Furthermore, 75 % of the energy used17

for heating and cooling of buildings is based on fossil fuels, while only 18 % originates from renewable18

and residual energy sources (R2ES) (of which 90 % biomass) [3]. The heating and cooling sector for19

buildings thus represents a large fraction of the total energy use and is a viable opportunity to improve20

the system efficiency and the energy source portfolio.21

Energy efficiency for the heating and cooling sector can be improved by district heating and22

cooling (DHC) systems in areas with a large heat/cold density, i.e. a large heat/cold demand per23

square kilometer. As Frederiksen and Werner stated, the fundamental idea of district heating (DH) is24

found in local synergies between heat sources and demand [4]. By connecting sources and demand25

through a pipe network, new heat and cold sources can be unlocked, such as combined heat and power26

(CHP), waste incineration, industrial residual heat, combustible renewables and geothermal sources,27

thereby improving energy efficiency and operational costs of the energy system. Connoly et al. [5]28

found that the inclusion of DHC in an EU energy efficiency strategy for 2050 can reduce the total costs29

for the heating and cooling of buildings by 15 %.30
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To increase the share of renewable and residual energy sources (R2ES), their intermittency must be31

dealt with. One possible solution is to introduce energy flexibility in the energy system. Its definition32

is as follows [6]: ‘Energy flexibility is the ability to shift the energy injection into or energy extraction from33

a system in time to bypass system limitations.’ By introducing energy flexibility, integration of R2ES34

can be improved by e.g. preventing curtailment. In this respect, DHC systems offer an interesting35

opportunity; they contain multiple thermal energy storage systems (TES), such as water storage tanks,36

aquifers, borefields, building thermal inertia, and the network itself. Intelligently deploying TES to37

create energy flexibility [7] can pave the way to large shares of R2ES.38

Within this context, this paper focuses on energy flexibility created by the thermal capacity of the39

water contained in DH network pipes, referred to as network flexibility from now on. By temporarily40

increasing/decreasing the supply temperature in the DH network, the network is charged/discharged.41

This way, energy can be stored for a while, bridging the gap between heat generation and heat demand.42

A detailed description of a typical network flexibility activation can be found in [6].43

By solving an optimal control problem (OCP), two applications of network flexibility are44

considered in this paper. There is operational heat pump optimisation in which the interaction45

with the day-ahead market is optimised, and peak shaving in which the use of an expensive and/or46

polluting peak unit is minimised [8–10]. In the literature, other applications of network flexibility can47

be found: CHP optimisation [11–13], R2ES integration [14–16] and providing ancillary services [17].48

However, the OCPs described in these studies all consider perfect predictions and perfect49

knowledge of the system model and parameters. However, this is not the case in reality and the50

OCP solution will deviate from the actual optimal control strategy. This study investigates the51

influence of these deviations on the control performance. Before going into the novelty and the specific52

research questions of this paper, the uncertainties that play a role in DH systems are introduced first,53

followed by a discussion on robust control of energy systems with uncertainty: how to determine a54

control strategy that can achieve a satisfactory result in (almost) all possible cases?55

1.1. Uncertainties in district heating systems56

Kim et al. [18] divided uncertainty into three categories. Model uncertainties are caused by a lack of57

knowledge regarding the physical system and/or the necessity to simplify and neglect certain aspects58

to keep the model solvable within acceptable time. Process uncertainties either refer to inaccurate59

actuators and sensors, or to the inability to measure certain system states. Forecast uncertainties relate to60

the imperfect forecasts made of system disturbances such as weather, electricity prices, R2ES generation,61

etc.62

One example is heat demand uncertainty, which is in fact the result of other uncertainties.63

The main contributors are: user behaviour predictions, weather forecasts and unknown building64

construction. Of these, the former two are related to forecasts, while the latter belongs to the model65

uncertainties category.66

To accommodate the user behaviour uncertainties, several tools have been set up to stochastically67

generate user behaviour profiles describing indoor temperature set-points, electrical appliance usage,68

internal heat gains and DHW use. These are mostly based on surveys and hence represent the typical69

behaviour of a certain population. Such tools include StROBe [19], Strathclyde University Demand70

Profile Generator [20], DELORES [21] and a Japanese activity-based modelling tool [22].71

Regarding weather predictions, often weather servers that provide regular weather forecasts can72

be used to analyse weather uncertainties. For example, by combining imperfect weather forecasts with73

the corresponding measurements of the weather as it actually occurred, Oldewurtel [23] analysed the74

influence of these uncertainties for building heating.75

The final contribution to heat demand uncertainty is the imperfect knowledge regarding building76

construction and building energy performance. Especially on district or city level, building energy77

performance related data is often unavailable [24,25]. Due to the lack of detailed input data on building78

level, archetype buildings are often used. Archetype buildings are buildings that are considered to be79
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representative for a larger group of buildings. As an example, the TABULA project defines archetype80

dwellings, i.e. typical dwellings, for multiple European countries [26]. For Belgium, 30 archetype81

buildings are characterised in terms of their geometry and U-values for roof, ground floor, exterior wall82

and windows. Thanks to the rising popularity and availability of geographical information systems83

and geospatial data, the building geometry of all individual buildings can be included within district84

energy simulations. However, thermal quality data of the building envelope is still rarely available,85

although they are collected in some countries for the calculation and allocation of building energy86

performance certificates. Unfortunately, these data are often not shared due to privacy issues. To87

overcome this issue, De Jaeger et al. [bijna gepubliceerde paper Ina] developed a method to estimate88

the thermal quality of the building envelope based on construction year and geometrical data of the89

building based on statistical data from the Flemish energy performance certificates database.90

In this paper, only the last source of heat demand uncertainty, the imperfect knowledge of building91

parameters, is discussed.92

1.2. Robust control of energy systems93

With these uncertainties, the optimal solution of a deterministic OCP may be far from optimal94

for the actual system, leading to a reduced performance. Hence, OCPs have been reformulated in95

the literature to integrate uncertainties and to reduce the associated risk. Three approaches can be96

discerned, ranging in complexity.97

Firstly, deterministic model predictive control (MPC) is a first step towards improved robustness.98

In short, an MPC solves an OCP with a receding horizon, i.e. at frequent points in time the OCP is99

solved with updated forecasts and system state measurements. The resulting optimal control strategy100

is then applied to the actual system [27]. Although the embedded OCP still does not consider the101

uncertainties, the regular update of relevant predictions and states ensures that the MPC control102

actions can adapt through time, all the while trying to minimise the objective. This technique is applied103

by Arnold and Göran [28] who alleviated prediction errors of electricity demand and R2ES generation104

in an electricity system with connected TES systems. They analysed the MPC performance by running105

Monte-Carlo simulations and concluded that the TES systems provided the MPC with an opportunity106

to deal with most of the prediction errors, thereby preventing unplanned start-ups of plants.107

A second approach uses stochastic modelling to determine the robust optimal control of a system.108

This is done by incorporating probability distributions for the stochastic parameters into the OCP.109

Different types of stochastic modelling can be found. In single-stage stochastic programming, all110

control actions are decided at one instance. This is e.g. the case in chance-constrained programming.111

Here, the chance that a certain constraint will be violated is limited to a certain extent. Bruninx et al. [29]112

applied such a chance constraint problem to ensure that the energy demand in an electricity system113

would be successfully generated and delivered in e.g. 95 % of the cases.114

Two-stage optimisation problems are solved in two stages, as explained by Verrilli et al. [30]:115

‘In two-stage stochastic programs, the decision variables are divided into two groups: the first-stage variables,116

which have to be decided before the actual realisation of the uncertain parameters becomes available, and the117

second stage or recourse variables, which can be decided once the random events occur. These recourse variables118

are also interpreted as correction actions to compensate any infeasibility from the first-stage decisions.’ This119

technique has been applied multiple times. Wang et al. [31] applied it to the optimal control of a120

building energy system. To test the robust optimal control problem, they compared it to an MPC121

by running Monte-Carlo simulations of both controllers. They concluded the robust optimal control122

and the MPC reached about the same performance, but the stochastic OCP could do so with a single123

evaluation across the whole time horizon. Tian [17] optimised the operation of a CHP connected to124

both the electricity system and a DH system with a two-stage stochastic problem. The goal was to125

offer ancillary services and participate in the electricity spot market while the electricity demand is126

uncertain. Interestingly, network flexibility is applied here to increase the CHP profits, yet no DH127

system uncertainties were included.128
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Other stochastic programming techniques found in the literature include scenario robust129

optimisation, in which a number of carefully selected scenarios are combined [18] in one OCP. Options130

to select such scenarios include Sample Average Approximations [30], Monte-Carlo sampling [32],131

Latin Hypercube Sampling [18] and the point-estimate strategy [33,34]. Monte-Carlo least squares132

regression analysis [35] and min-max optimisations (worst-case optimisations) have also been applied133

for robust control of energy systems [36,37].134

Finally, a third approach to reach robust control is by combining the first two: MPC and stochastic135

optimal control. While Oldewurtel [23] integrated a chance-constrained program for building energy136

system control into an MPC, Rantzer [38] and Verrilli et al. [30] both developed an MPC containing a137

two-stage optimisation problem for DH system control.138

This overview shows that plenty of research in robust control of energy systems has been done.139

However, to the authors’ knowledge, there has been no research yet in robust control of network140

flexibility with respect to heat demand uncertainty or any other form of uncertainty in the DH system141

itself. Hence, the exploratory study presented in this paper focusing only on the impact of building142

parameter uncertainty provides a valuable contribution to the scientific literature.143

1.3. Novelty and research questions144

The main novelty of this paper is the assessment of building parameter uncertainties, leading145

to an uncertainty in the heat demand magnitude1, impacting the network flexibility activation in146

DH systems based on a deterministic OCP. Two applications of network flexibility are studied: 1)147

operational heat pump optimisation in which the interaction of a central DH heat pump with the148

day-ahead electricity market is studied, 2) peak shaving.149

This study indicates how sensitive the optimal network flexibility activation is to the building150

parameter uncertainties and hence a change in heat demand magnitude, and how much risk is151

associated with adopting a control strategy based on wrongly estimated building parameters. This152

paper shows whether simple measures can provide less risk and/or higher profits leading to a more153

robust control strategy. It is a first step in estimating the importance of robust network flexibility control154

and to the development of that robust control. The following research questions will be considered:155

1. How does the optimal network flexibility activation (i.e. the control strategy) alter when the156

building parameters are different?157

2. How sensitive is the network flexibility performance to the applied control strategy (and hence158

to uncertainty)?159

3. Does this preliminary study lead to insights for a more robust activation of network flexibility?160

In this paper, the considered case study is described first. Then, in Section 3, the methodology for161

the optimal control, the uncertainty on the heat demand and the uncertainty analysis is introduced.162

Subsequently, the results are presented in Section 4, followed by the discussion in Section 5. Finally,163

the conclusions are formulated in Section 6.164

2. Case study: GenkNET165

The influence of building parameter uncertainty on network flexibility is tested by optimising the166

control of GenkNET. This is a fictive DH system based on the city of Genk, Belgium. To set up this case167

study, steps 1-4 in Figure 1 were followed. First, the geometrical data from 7775 buildings located in168

Genk were collected from a CityGML LOD2 model. Then, Genk was divided into 9 neighbourhoods169

and for every neighbourhood the average construction year was determined by a Google Streetview170

scan. To determine the user behaviour of the people inhabiting these buildings, user behaviour profiles171

1 Uncertainty on the heat demand magnitude refers to a heat demand profile that has been scaled up/down with an uncertain
(time-variable) factor. The ‘magnitude’ term is used in this text to emphasise that there are no timing changes. For an
example of heat demand profiles that only have magnitude changes, please refer to Figure 5.
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(temperature set-points, internal heat gains, DHW use, etc.) were generated with the stochastic toolbox172

StROBe [19].173

GenkNET DATA COLLECTION

1. Collect geometry from CityGML LOD2 model for all buildings
2. Divide Genk into 9 residential neighbourhoods connected to the DH system
3. Estimate average construction year per neighbourhood

OPTIMISE NEIGHBOURHOOD HEAT DEMAND PROFILES CALCULATE UNCERTAINTY ON HEAT DEMAND PROFILES

5. Allocate building envelope parameters based on TABULA
6. Allocate stochastic occupant behaviour based on StROBe 
7. Optimise heat demand per building using modesto
8. Sum heat demand profiles for all buildings in neighbourhood

9. Calculate 1 archetype per neighbourhood
10. Determine realistic input distributions for building
envelope parameters per archetype based on probabilistic
method
11. Sample building envelope parameters for 500 variants
per archetype

4. Allocate stochastic occupant behaviour based on StROBe

12. Simulate heat demand of each variant using IDEAS
13. Calculate CV(Q) per archetype based on LDC

14. Create 100 variants of heat demand profiles (step 8) using CV(Q) (step 13) per neighbourhood

15. Create 100 variants of GenkNET heat demand profiles by random selection of each neighbourhood

Figure 1. A flow chart describing the different steps taken to determine the GenkNET heat demand
profiles including uncertainties (relevant to both Sections 2 and 3).

To limit the computational complexity of this case study and to prevent the simultaneous174

simulation of 7775 buildings, a thorough aggregation was carried out. Every neighbourhood in175

GenkNET is now represented by one substation that has to deliver the heat demand of the entire176

neighbourhood, neglecting the distribution network in a neighbourhood. For more details on this177

aggregation, please refer to [6]. This leads to the DH system layout shown in Figure 2. The nominal178

supply and return temperatures in this DH system are taken to be 57 °C and 37 °C, respectively. The179

pipe sizes are determined by the sizing procedure presented in [6].180

Box

Figure 2. The lay-out of the aggregated GenkNET, indicating the position of the 9 neighbourhoods.
There is a single heat generation site in the north-east of the network. The network pipes are indicated
by the numbered lines.
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Instead of a whole year analysis, only a limited number of days is tested in this paper. To181

select a representative set of days, two aspects are considered: 1) the overall heat demand, leading182

to a distinction between winter and transitional (spring and autumn) days. The summer days are183

not considered, as summer heat demands proved to be too low for interesting network flexibility184

activations and hence interesting results. 2) The day-ahead electricity price profile can be either stable185

and positive (small ∆pe), volatile and positive (large ∆pe), or become negative during the day (negative186

pe). The electricity price pe corresponds to the BELPEX day-ahead market prices in 2014. This leads to187

a selection of 6 days, given in Table 1. These days will be referred to as <season>_<electricity price>,188

according to the names of the columns and rows of Table 1.189

Table 1. The nine days selected for the GenkNET case. These days will be referred to as
<season>_<electricity price>.

Heat demand Winter Trans(itional)
El. price

Small ∆pe 16/01 29/03
Large ∆pe 14/01 17/11

Neg(ative) pe 16/02 16/03

In this paper, the heat generation unit is either a central air-to-water heat pump or a base/peak190

plant combination. The six selected days account for different electricity price profiles which allow191

to study different heat pump cases, as the operational heat pump optimisation heavily depends on192

the electricity price variation through time. To study the base/peak plant combination in more depth,193

different base load ratios are studied. The base load ratio rb defines the capacity of the base unit Q̇b, max194

relative to the peak heat demand of the analysed day Q̇dem,max, day. Three base load ratios are tested:195

60, 80 and 95 %. Note that this will lead to base plant sizes that are different for every case (day and196

base load ratio).197

rb =
Q̇b, max

Q̇dem,max, day
(1)

3. Methodology198

This section presents the methodology used. Firstly, it discusses the optimal control problems199

that will be solved in this study. Secondly, the set-up of the heat demand profiles with uncertainty is200

presented. Finally, the methodology of the uncertainty analysis to assess the influence of the building201

parameter uncertainty on network flexibility is described.202

3.1. Deterministic optimal control203

To determine the optimal network flexibility activation, the toolbox modesto [39] is used. It204

contains a library of (non-linear) DH component models, including pipe, substation and heat generation205

models. The models as they are used in this study are presented in Appendix A. These models were206

developed specifically for determining optimal network flexibility activations. Hence, these models are207

suited to model the temporary network temperature changes in the DH network and the corresponding208

energy storage that take place during a network flexibility activation. For more information on the209

interactions that take place during a network flexibility activation, we refer to [6]. However, note that210

the models are completely deterministic and do not take into account any uncertainties.211

modesto can automatically assemble the GenkNET DH system optimisation model based on212

its topology and a selection of models and optimisation objective. For each considered case, the213

network topology remains the same, yet the heat generation site and optimisation objective is changed214

depending on the studied case. In case of heat pump or peak shaving optimisation, either a heat215

pump model or a base/peak plant model is included. The optimisation objective depends on the heat216
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generation site, Equations 2 and 3 show the objectives CHP and CPS for the operational heat pump and217

peak shaving optimisation, respectively. In these objectives, Ẇ is the electrical work done by the heat218

pump to generate the heat, pe(i) is the day-ahead electricity market price during time step i, expressed219

in AC/kWhel, ∆t is the time step between two points in time in the discretised OCP with a total of N220

time steps. Q̇b and Q̇p are the heat delivered by the base and peak plant unit, respectively. Similarly,221

pb and pp are the prices of the heat generated by both units. They are expressed in AC/kWhth and are222

constant in time. This price already includes the plant energy efficiency. In this study, only the ratio223

between the two prices is imposed, equal to pp/pb = 2 [40].224

CHP =
N

∑
i=1

pe(i)Ẇi∆t (2)

CPS =
N

∑
i=1

(pbQ̇b,i + ppQ̇p,i)∆t (3)

The price of heat generation by the base unit is lower than that by a peak unit. Hence, the peak225

shaving objective causes a preference for the base unit and incentivises peak shaving. The heat pump226

objective incentivises heat generation on moments during which the electricity price is low. In this227

study, network flexibility is the only available tool in the OCP to create energy flexibility. By running228

the optimisation twice, once with network flexibility available, i.e. the supply temperature may change229

between its nominal value and a value that is 10 °C higher, and once with no network flexibility230

available, i.e. the supply temperature leaving the plant must remain equal to the nominal value, the231

network flexibility activation can be isolated. A more elaborate explanation on this workflow can be232

found in [41].233

The OCP settings and models are elaborated on in Appendix A.234

3.2. Heat demand profiles235

Following the process in Figure 1 (steps 5-15), heat demand profiles containing building parameter236

uncertainties can be set up.237

In a first part (steps 5-8), the heat demand profile for every neighbourhood in GenkNET is238

determined based on a minimum energy use optimisation. Starting from the geometries of the 7775239

buildings in Genk (step 1) and the neighbourhood construction year (step 3), building parameters are240

allocated to each building based on the TABULA archetype U-values [26]. Based on this data and the241

StROBe user behaviour profiles (step 4), van der Heijde calculated the building heat demand profiles242

[42], based on the 4th order TEASER RC-model [43]. For this he used the typical meteorological year243

of Uccle, Belgium. To calculate the heat demand profiles, van der Heijde made use of modesto to244

determine the heat demand profile that ensures thermal comfort with minimum energy use in every245

building. Finally, to reach one heat demand profile per aggregated GenkNET neighbourhood, the heat246

demand profiles of buildings belonging to one neighbourhood are summed.247

In a second part (steps 9-13), the uncertainty on the heat demand profiles is calculated. To reduce248

the computational burden, the uncertainty in each neighbourhood is determined through the use of249

archetype buildings. The archetype building for a neighbourhood is characterised by the estimated250

average construction year of the neighbourhood (step 3) and the average building geometry. To obtain251

the average building geometry, the geometry of all buildings is required (step 2). The areas of the252

façades and roofs are merged towards 4 orientations (N, E, S, W), with a negligible loss of accuracy253

[44]. This simplifies calculating the average. This procedure is repeated for every neighbourhood and254

results in nine archetype buildings.255

For these nine archetype buildings, distributions on the U-values of the roof, ground floor, exterior256

wall and windows are introduced along with variations on the window-to-wall ratio, based on the257

method of De Jaeger et al. [toekomstige paper Ina]. These distributions are estimated to be as realistic258
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as possible considering the scarcely available data of Genk [toekomstige paper Ina]. Note that building259

geometry is assumed to be known perfectly, as are user behaviour and weather predictions.260

Using these distributions, 500 versions of every archetype building are generated. The261

distributions of all (9x500) generated building parameters can be seen in Figure 3. Next, yearlong262

simulations of the archetype buildings are carried out in Modelica using the IDEAS model library263

[45]. These simulations entail a 2-zone white-box model of the SH system consisting of ideal radiator264

heating. The user behaviour and weather as they were described in Section 2 are applied. This leads to265

the distribution in annual SH heat demand in GenkNET shown in Figure 4.266

Based on the simulation results, load duration curves (LDC) of every variation are set up. The267

coefficient of variation2 (CV) for one archetype was found to change in function of the expected SH heat268

demand of that building Q̇arch, SH,µ. Furthermore, the CV could be well estimated by an exponential269

in function of the expected SH heat demand of the archetype building, with a, b and c the fitting270

parameters that depend on the neighbourhood.271

CV(Q̇arch, SH,µ) = a exp(−bQ̇arch, SH,µ) + c (4)

By stating that the archetype building heat demand is the average building heat demand in a272

neighbourhood with Nb buildings and expected heat demand Q̇SH,µ, the following expression for CV273

can be set up for each neighbourhood:274

CV(Q̇SH,µ) = a exp(−b
Q̇SH,µ

Nb
) + c (5)
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Figure 3. Five histograms showing the building parameter distribution in the nine GenkNET
neighbourhoods, according to the 9x500 variations.
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Figure 4. A histogram showing the distribution of the annual GenkNET heat demand, according to the
500 variations.

In a third part (steps 14-15), the uncertainties (steps 9-13) can be added to the optimal heat demand275

profiles (steps 5-8). Based on the exponential curves describing the CV, new SH heat demand profiles276

2 The coefficient of variation is the ratio of the standard deviation to the mean of a distribution: σ/µ.
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for each neighbourhood in GenkNET are set up. To do so, a normal distribution is assumed, which277

has been used in the literature before to describe building heat or electricity demand distributions278

[23,29,32,38,46]. Considering the distribution in Figure 4, this seems a reasonable assumption. This279

allows the use of the following quantile function:280

F−1(p) = µ + σ
√

2erf−1(2p− 1) (6)

For a normally distributed variable, F−1(p) is the value of the variable for which there is a281

probability p such that F−1(p) is greater than or equal to the variable. In this equation, µ and σ are the282

expected value and standard deviation of the variable, and erf−1 is the inverse error function.283

To set up the SH heat demand profile of version v, the following is done. The value for p is284

randomly selected from a uniform distribution between 0 and 1. Then, starting from the optimal SH285

heat demand profiles (steps 5-8) [42], at every point in time the quantile function is applied along with286

the CV that corresponds to the expected heat demand Q̇SH,µ,i at the point in time i:287

Q̇SH,v,i(p) = Q̇SH,µ,i

(
1 + CV(Q̇SH,µ,i)

√
2erf−1(2p− 1)

)
(7)

This process yields curves that are scaled by a factor changing through time, with the factor288

depending on the heat demand at that time.289

An additional step is added to introduce a small amount of random behaviour. Following the290

autoregressive process AR(1), an extra term was added to the heat demand profile. This term has an291

autocorrelation of 0.75 between two subsequent points in time separated by 15 minutes and it has a292

standard deviation of 3 % of Q̇SH,µ,i, following the prediction error analysis in [47].293

This way, 100 different SH heat demand profiles are generated for every neighbourhood. To end294

up with 100 different versions of GenkNET, one generated profile of every neighbourhood is grouped295

together. This grouping was done fully at random, although it could be argued that there might be296

correlations between neighbourhoods, e.g. if the U-values were underestimated in one neighbourhood,297

chances are that this happened in other neighbourhoods as well. However, this effect is not included298

here.299

No uncertainty was added to the DHW heat demand, so these are simply added to the different300

SH heat demand profiles. Finally, the left of Figure 5 shows the heat demand of GenkNET of all 100301

versions for the Trans_Negpe day. The right graph shows 11 selected profiles, spread over the entire302

range. Note that the range in variation is similar to that shown in Figure 4, with about a factor 2303

between the most extreme cases. The extra random changes that were added to the profile have little304

effect and do not change the overall behaviour.305

3.3. Uncertainty analysis306

To analyse the influence of heat demand magnitude uncertainty on network flexibility activations,307

three steps are taken, which are described below.308

3.3.1. Step 1: Optimal control of each GenkNET version309

With 100 possible versions of GenkNET created, the optimal control strategy of every version can310

be calculated. By solving the OCP twice, once with and once without network flexibility, referred to as311

the Flexibility and Reference cases, the optimal network flexibility activation can be isolated. Six days312

(see Table 1) will be analysed with respect to operational heat pump optimisation, and peak shaving313

for different base load ratios (60, 80 and 95 %).314

This leads to 100 optimal network flexibility activations for GenkNET, based on heat demand315

profiles that differ mostly in amplitude. This step will show how the optimal control changes as the316

heat demand magnitude changes.317
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(b) 11 evenly spread out versions.
Figure 5. The different heat demand profiles of GenkNET for the Trans_Negpe day. The black line
indicates the expected heat demand.

3.3.2. Step 2: Selection of 11 control strategies318

All GenkNET versions are ordered from low to high annual heat demand. Using this ordering,319

every tenth profile is selected, corresponding to the selection in Figure 5b. Hence, when ordered320

according to the annual heat demand, versions 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 are chosen.321

These versions will be named by these numbers in the remainder of this study, with 0 corresponding to322

the GenkNET version with the lowest annual heat demand and 100 to the one with the highest annual323

heat demand. Note that the ordering of the profiles is the same for each of the six days and any other324

variation that is analysed in this study.325

3.3.3. Step 3: Applying the 11 control strategies to all 100 GenkNET versions326

Finally, the optimal control strategies of the 11 versions selected in the previous step are applied to327

all 100 GenkNET versions. This leads to 1100 evaluations of GenkNET for one day and one optimisation328

case. This step shows how the optimal control performance changes when the ‘predicted’ and ‘actual’329

heat demand differ from each other.330

4. Results331

The results are split up into a discussion of the optimisation of heat pump operation and peak332

shaving optimisation and are presented below.333

4.1. Operational heat pump optimisation334

The operation of the heat pump is optimised to achieve the lowest possible electricity costs to335

drive the heat pump while delivering the heat demand to the customers. The electricity prices are336

based on the 2014 BELPEX day-ahead electricity market.337

4.1.1. Optimal control of the 11 selected versions338

In Step 1 of the uncertainty analysis, the optimal control strategies of all 100 versions of GenkNET339

were calculated. Figure 6 shows the optimal control of the 11 selected versions on the Winter_Negpe340

day (a winter day with an electricity price that becomes negative). These 11 versions are spread out341

over the entire range of heat demand magnitudes and give a good overview of the optimal control342
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of all versions. Figure 6 shows that the network is charged three times: during the two negative343

price periods and before a large change in electricity price. With the COP reducing when the supply344

temperature is increased, which is inevitable when activating network flexibility, these are the only345

moments when network flexibility is profitable. In Figure 6, the Flexibility and Reference case refer to346

the cases in which network flexibility is available and in which it is unavailable, respectively.347

ge
n

ge
n

Line style

GenkNET version

Figure 6. For the Winter_Negpe day, the results of the operational heat pump optimisation for the 11
selected GenkNET versions are shown. From top to bottom, the electricity price, the supply temperature
at the plant, the heat injection and the heat injection response (the difference between the Flexibility
and Reference case) are shown. The negative price periods are indicated by the dark grey zones.

During the first negative price period, there is a substantial difference between the supply348

temperature pulses of the different GenkNET versions, whereas the pulses are nearly identical in the349

second negative price period. The differences in the first period are likely caused by the second period350

that follows shortly after. In the low heat demand versions, the water travels so slowly that charging351

the network during the first negative period causes the network to discharge during the second, more352

interesting, negative period, causing a loss in profits. In the high heat demand versions, the water353

travels faster and the discharge has ended by the time the second negative period starts.354

When there is a large price difference, the supply temperature pulse remains similar in all cases355

but starts earlier as the heat demand reduces, again a consequence of the lower water speeds in the356

network. Hence, the general actions are largely based on the electricity price profile and remain357

similar throughout all versions. However, the exact timing can change considerably, with pulse lengths358

doubling as the heat demand becomes lower. Note that the third pulse always ends at the same point359

in time, namely when the price increase is taking place.360

4.1.2. Applying 11 different control strategies to all 100 GenkNET versions361

In Step 3, the optimal supply temperature profiles in Figure 6 are applied to all 100 versions. This362

leads to 1100 evaluations for each day, which are presented in Figure 7. Only the three days during363

which there is a significant network flexibility activation are shown: Winter_Negpe, Trans_Negpe and364

Trans_Large∆pe. For each of the 11 selected control strategies, a box plot is set up. The box plot presents365

the profit of applying the selected control strategy to all GenkNET versions. Studying the median value,366

it seems that every optimal control strategy achieves a similar profit on average. On the Trans_Negpe367

and Trans_Large∆pe days, the spread on the profits remains similar as well, regardless of the control368
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strategy. The profits are symmetrically spread around the median and show a possible deviation from369

the median profit of about 20 % and 33 % on Trans_Negpe and Trans_Large∆pe, respectively.370
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Figure 7. Box plots of the profits obtained with the 11 selected control strategies on all GenkNET
versions for three different days. The box plots shows the median, first and third quartile and the
minimum and maximum (excluding outliers) of a data set. The outliers are represented by the diamond
markers.

On the Winter_Negpe day, the profit variation decreases as higher optimal control strategies are371

applied. Looking back at Figure 6, this is likely caused by the quick succession of two negative price372

periods. When a higher heat demand is predicted, a large supply temperature pulse is applied during373

the first negative period. If the actual heat demand is lower, the discharge phase is taking place during374

the more interesting second negative price period, limiting the profits. Vice versa, if a low heat demand375

is predicted, but it turns out to be high, the first negative price period was only covered by a small376

temperature pulse. The spread in profits for control strategies 0 and 100 can be seen in Figure 8, which377

also shows the difference with the actual optimal solution. It seems that an optimal control strategy378

based on a different heat demand prediction can lead to a profit reduction by up to a factor 2.379

From the cases studied here, it seems that the risk related to heat demand magnitude uncertainty380

can cause a reduction in profits, yet there was no risk of losing money (negative profits). In general,381

the control strategy remained similar in all cases, as the control strategy mostly aims for moments with382

a negative price or with large price changes. The heat demand at those times seems less important.383

4.2. Peak shaving optimisation384

In the peak shaving optimisation, two plants are available to generate the heat. The base unit can385

generate heat cheaply but does not have a heat output sufficiently large to deliver the heat demand386

peaks. The peak unit can cover the peak but at a higher cost. To minimise the cost of heat generation,387

peak shaving is hence applied by activating network flexibility.388
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Control strategy

Figure 8. On the x-axis the heat demand during the Winter_Negpe day is shown, on the y-axis the profit
that was obtained. Every dot represents one version of GenkNET managed by one control strategy,
the colour and marker shape indicate the applied control strategy. One version will always have the
same heat demand, regardless of the applied control strategy. The vertical dotted lines show the heat
demand that correspond to the 0 and 100 control strategies.

4.2.1. Optimal control of the 11 selected versions389

Figure 9 shows the optimal control results of the 11 selected profiles when the base unit can deliver390

95 % of the expected peak heat demand, with a peak-base price ratio of 2 on the Winter_Large∆pe day.391

It shows that the versions with a lower heat demand do not require any network flexibility, while those392

with a higher heat demand do not succeed in shaving the entire peak. For the versions with the highest393

heat demand, an additional large supply temperature pulse appears at the end of the peak period. As394

was explained in [6], a flexibility activation takes place in several phases. First, the network is charged,395

then it is discharged and at the end a rebound takes place. The rebound compensates the part of the396

discharge that was not covered by the initial charge. In the last network flexibility activation at the end397

of the peak period in Figure 9, the initial charge and discharge are both covered by the peak unit, but398

the rebound is covered by the base unit, effectively moving a small amount of energy from the peak399

unit to the base unit.400

GenkNET version

Linestyle

Figure 9. For the Winter_Large∆pe day, the results of the base-peak plant optimisation for the 11
selected GenkNET versions with a base load ratio of 95 % are shown. From top to bottom, the supply
temperature at the plant, the heat injection and the heat injection response are shown. In the middle
graph, the maximum heat output of the base unit is indicated by the grey horizontal line.
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The differences between the different control strategies are clearly larger than for the operational401

heat pump optimisation. Hence, it is expected that larger ranges of profits (and losses) will appear402

when applying these strategies to all 100 versions.403

4.2.2. Applying 11 different control strategies to all 100 GenkNET versions404

Figure 10 shows the peak energy that could be avoided in all 100 versions with 11 different control405

strategies. This is done for the Winter_Large∆pe and Trans_Small∆pe days for base load ratios of 60, 80406

and 95 %. The variation in avoided peak energy has a much larger range than the profit range found407

for the operational heat pump optimisation. When comparing base load ratios different trends can be408

observed.409

Figure 10. Box plots of the avoided peak energy with the 11 selected control strategies on all 100
versions of GenkNET for Winter_Large∆pe and Trans_Small∆pe and for different base load ratios.

Starting on the right of Figure 10 with a base load ratio of 95 %, the lower control strategies cannot410

accomplish anything at all. Looking back at Figure 9, no network flexibility is required when the heat411

demand is low, hence there is no network flexibility activation. Going to the higher control strategies,412

the average peak energy that can be avoided increases as does the possible range, although it always413

remains mostly positive, i.e. very little to no extra peak energy had to be generated even in the worst414

case for Trans_Small∆pe.415

However, the highest control strategies on Winter_Large∆pe cause extra amounts of peak energy416

to be generated in many cases. Here, a second large temperature pulse at the end of the peak period417

has appeared (see Figure 9). This type of network flexibility appears to entail a large risk, as illustrated418

in Figure 11. If this second pulse is applied to a case with a lower heat demand in which the peak unit419

is not active at that time, the peak unit might have to be (re)activated to deliver this pulse while the420

base load is later on reduced, e.g. in version 50. This increases the delivered peak energy substantially.421

It seems that in case of a large base unit and heat demand magnitude uncertainties, it is better to422

overestimate than underestimate the heat demand, but to avoid a network flexibility activation at the423

end of a peak period.424

Going to a base load ratio of 80 %, a similar pattern appears, yet everything has shifted to the left;425

the base unit must now be activated more quickly. The Winter_Large∆pe day again shows a risk to426

generate more peak energy when going to higher control strategies. Again, this is caused by a network427

flexibility activation at the end of a peak period. This extra pulse has disappeared again at the highest428

control strategy, which shows no risk to increase the peak energy. The 80 % case shows a clear best429
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Line style

GenkNET version

Figure 11. The application of control strategy 100 on a GenkNET version with low (0), medium (50) and
high (100) heat demand on the Winter_Large∆pe day with a base load ratio of 95 %. The maximum base
unit heat generation is indicated by the horizontal grey line.

result in the intermediate control strategies. For these strategies, the heat demand was high enough430

that peak shaving is required, but not that high that the peak unit must be active (nearly) all the time,431

limiting chances for network flexibility.432

In case of 60 %, another shift to the left has occurred, the peak unit is now activated even in case433

of the smallest heat demand. The average avoided peak energy now remains very constant up to the434

highest control strategies. Here, it decreases again, as hardly any network flexibility is activated any435

more. The heat demand has now become so high that the base unit must be active (nearly) all the436

time. Although the range of possible peak energy avoided can be large, there is little risk, i.e. the437

delivered peak energy will not increase. It seems that in case of a smaller base unit, it would be safe to438

underestimate the heat demand when deciding a control strategy.439

To better understand what occurs when the heat demand changes and what influence the different440

control strategies have, Figure 12 shows the peak energy that could be avoided for all GenkNET cases441

in six days for a base load ratio of 95 %. For each GenkNET version, the result of four different control442

strategies is shown: the optimal control strategy of that version, the result when the lowest and highest443

heat demand are ‘predicted’ and lastly a control strategy that follows the recommendations from444

before. For a base load ratio of 95 %, it seemed advisable to select a control strategy corresponding to a445

higher heat demand, without going too high. Hence, control strategy 70 is selected.446

The optimal control solutions (black dots) in Figure 12 show some interesting results. With low447

heat demands, there is no need for peak shaving and hence no peak energy can be avoided either.448

After a while, the avoided peak starts increasing, until on most days a maximum is reached. This449

maximum corresponds to the maximum energy storage capacity of the GenkNET network (estimated450

to be 36.8 MWh)3. When this maximum is exceeded, there are multiple peaks and network flexibility451

activations during one day, e.g. a morning and evening peak. These extra peaks appear and disappear452

as the heat demand magnitude changes.453

3 This number was estimated by calculating the total water mass in the GenkNET network, see Figure 2, and multiplying this
mass with the specific heat capacity of water and the allowed temperature increase of 10 °C.
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Control strategy

Figure 12. On the x-axis the total heat demand during each day and each version is shown, on the
y-axis the peak energy that was avoided with a control strategy. Every dot represents one version of
GenkNET managed by a different control strategy. The vertical dotted lines show the heat demand that
correspond to the shown control strategies.

Of all control strategies, the optimal control strategy (black dots) reaches the best result in all454

cases, as is expected. Control strategy 0 cannot avoid any peak energy, as it does not activate network455

flexibility. Control strategy 100 can accomplish a reasonable result on the transitional days, noticing456

the afternoon peak that occurs with the highest heat demands on Trans_Negpe. However, on the winter457

days, it attempts to activate network flexibility at the end of a peak unit activation, which is risky in458

case the heat demand turns out to be lower. Lastly, when control strategy 70 is applied, it can in most459

cases follow the optimal strategy very well. It only misses the afternoon peak of Trans_Small∆pe and460

Trans_Negpe. On Winter_Small∆pe, its performance decreases with increasing heat demand. Here, the461

peak period moves significantly through time as the heat demand changes. In case of the highest heat462

demands, the peak has already started by the time case 70 starts charging the network. This implies463

that changes in peak timing will complicate the selection of a robust control strategy even further.464

Remember that each GenkNET version is composed of nine neighbourhoods, of which the heat465

demand variation was chosen at random and independently of the other neighbourhoods. This means466

that two GenkNET versions with equal total daily heat demand, could have a different distribution467

of heat demand throughout the nine neighbourhoods and a different reaction to the same supply468

temperature pulse. Yet, in Figure 12, all points show clear trends. It seems that a different heat469

demand distribution amongst the GenkNET neighbourhoods does not influence the network flexibility470

activation that much with the currently imposed building parameter distributions.471

5. Discussion472

This study investigates how optimal control changes when the building parameters and hence the473

heat demand magnitude changes and how the control performance changes when a control strategy474

based on a different ‘predicted’ heat demand is applied.475
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5.1. How does the optimal network flexibility activation change when the building parameters/heat demand476

magnitude changes?477

When the heat demand changes so do the mass flow rates and the network flexibility timing. This478

is an effect that is visible in the operational heat pump optimisations, although its influence is limited479

when electricity prices become negative. Only in certain circumstances when multiple negative price480

periods follow each other shortly, the heat demand magnitude may influence the network flexibility481

activation to a larger extent.482

In case of peak shaving, not only the mass flow rates in the system are important, so is the483

magnitude of the heat demand with respect to the maximum heat output of the base unit. This can484

largely influence the network flexibility activation. With a low heat demand, it may be that there is no485

need for peak shaving, while with a high heat demand network flexibility is not sufficient to shave the486

entire peak.487

5.2. How does the network flexibility performance change when the control strategy changes?488

There was relatively little difference in the performance of different control strategies for489

operational heat pump optimisation.The resulting (average) profits were rather independent of the490

applied control strategy. Again, in the considered cases it seems that the electricity price timing is at491

least as important as the heat demand magnitude. Only in special cases (with multiple negative price492

periods), a significant difference in control strategy performance could be noticed. Hence, for the case493

of GenkNET with variations on building parameters, operational heat pump optimisation does not494

present much risk. A minimum profit could be guaranteed in all cases.495

For peak shaving, another observation can be made. The control strategies were highly dependent496

on the heat demand magnitude. Yet, an analysis of their performance (i.e. the peak energy that could497

be shaved) showed that the studied heat demand uncertainty does not introduce much risk. With most498

control strategies, the generated peak energy remained the same or decreased. In the few cases that499

network flexibility accomplished a result worse than the Reference case, this was caused by a network500

flexibility activation at the end of a peak period, or by a large change in the start time of a peak period.501

This does suggest that uncertainties in timing (related to user behaviour and weather), may induce502

larger risks.503

5.3. Does this preliminary study lead to insights for a more robust activation of network flexibility?504

For operational heat pump optimisation, it seems electricity price related uncertainties may be505

more relevant. Future research should look into this type of uncertainty in more detail to conclude what506

measures are required to achieve a more robust network flexibility activation. For now, considering507

only building parameter uncertainties, there seems to be little risk in selecting a control strategy.508

For peak shaving, if only heat demand magnitude uncertainties are expected, a recommendation509

for peak shaving can be made based on the results gathered in this paper. The losses associated with510

activating network flexibility needlessly are limited, while the possible gains are substantial. Hence, it511

seems better to activate too much flexibility, instead of too little. Only the activation at the end of a512

peak period should be avoided as it introduces a risk of generating more peak energy.513

5.4. Remarks514

This study only considers uncertainties on building parameters. Yet, in reality, these uncertainties515

may be the least problematic with respect to control. As building parameters do not change, the516

errors in heat demand predictions caused by them can be corrected over time. By contrast, the user517

behaviour and weather do change over time and may be much harder to deal with. However, for518

building parameter data, realistic data distributions could be set up and analysed.519

The plant models are simple and do not contain all relevant aspects. For example, the peak520

unit may require start-up and shut-down costs. These costs increase the risk associated with heat521
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demand uncertainties, as a small peak unit activation may cost much more than was assumed now.522

Additionally, it was assumed that the base unit can increase the network supply temperature without a523

reduced efficiency. If the efficiency depends on the supply temperature, this may alter the conclusions524

made before. Similar things can be said for the heat pump, for ramping limits and costs, etc. A future525

study should look into these aspects.526

The building heat demand profiles were built with small random variations, along with527

uncorrelated building parameter uncertainties between the neighbourhoods. The results suggest528

that these aspects have little influence, as the scatter plots of Figures 8 and 12 showed clear trends529

when ordering the different versions according to the total heat demand during the day. This would530

indicate that 1) small (random) heat demand variations may not be that important. Hence, predictions531

may not need to go in great detail, although the extent of this should be investigated. 2) The distribution532

of the heat demand among the neighbourhoods may not have such a large influence either, although533

the different neighbourhood locations in the network do influence the network flexibility activation534

timing. Again, this is another aspect that merits further study.535

6. Conclusion536

This study evaluates the influence of building parameter uncertainties on network flexibility537

performance. This is done by determining and analysing distributions for building parameters in the538

city of Genk, Belgium. This led to 100 different profiles describing the heat demand in a fictive DH539

system in Genk. These heat demand profiles differ mostly in magnitude, not in timing. The optimal540

control strategy applying network flexibility for these different heat demand profiles was calculated541

for operational heat pump optimisation and peak shaving. Additionally, control strategies that are542

optimal for one heat demand profile were applied to all others, to study the influence of an incorrect543

heat demand prediction.544

Analysis of these results shows that building parameter uncertainties do not influence operational545

heat pump optimisation much, and could reach an average profit that is similar regardless of the546

applied control strategy. For peak shaving, the heat demand magnitude matters much more, as it is547

the main factor that determines a peak unit activation. Yet, here the risk remains limited, hence a large548

network flexibility activation to prevent a possible peak period seems advisable.549
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CHP Combined Heat and Power
CV Coefficient of Variation
DH District Heating
DHC District Heating and Cooling
DHW Domestic Hot Water
LDC Load Duration Curve
MPC Model Predictive Control
OCP Optimal Control Problem
R2ES Renewable and Residual Energy Sources
SH Space Heating
TES Thermal Energy Storage

568

Appendix A. Optimal control component models and settings569

This appendix shortly presents the component models included in the OCP solved in this paper,570

along with the optimisation settings. For a more detailed overview of the applied optimal control571

problem, please refer to [48].572

Appendix A.1. Pipe model573

The pipe model is an explicit transient first-order upwind finite volume model, as has been used574

before in the literature [49–56]. The energy balance of one finite volume is described in Equation A1.575

mk is the mass of water in one finite volume, cp is the specific heat capacity of water, i and k are indices576

indicating the time step and the finite volume, respectively. Ti,k is the temperature of one finite volume577

at one instance in time, ∆t is the length of the time step, ṁ is the mass flow rate through the pipe, Tg is578

the ground temperature and R is the thermal resistance between water and surrounding ground.579

mkcp(Ti, k − Ti-1, k) + ṁicp∆t(Ti-1, k − Ti-1, k-1) =
Tg − Ti-1, k

R
∆t (A1)

To account for the wall thermal inertia, a correction at the end of a pipe has been added. This580

correction is given in Equation A2 and follows the technique presented by Benonysson [57]. Here,581

T′out, i is the temperature exiting the pipe corrected for the wall thermal inertia, while Tout, i is the582

temperature exiting the pipe as calculated by the finite volume model. Cpipe is the thermal capacity of583

of the pipe wall, Twall, k is the pipe wall temperature. The wall temperature is updated through time584

by Equation A3585

T′out, i =
Tout, iṁicp∆t + CpipeTwall, i-1

Cpipe + ṁicp∆t
(A2)

Twall, i = T′out, i (A3)

This finite volume model is only stable if the following condition related to the spatial and
temporal discretisation is met:

CFL =
u∆t
∆x
≤ 1 (A4)

In this equation, u is the speed of water through the pipe and ∆x is axial length of a finite volume.586

The closer CFL is to one, the less numerical diffusion takes place and the more accurate the model is.587

Similarly, the finer the discretisation is, i.e. the smaller ∆x and ∆t are, the more accurate the model is.588

However, a finer discretisation causes a quadratic increase in calculation time. To discretise, a careful589

selection of the spatial discretisation (∆x) and temporal discretisation (∆t) were made such that the590

accuracy is sufficiently high and the problem remains solvable within an acceptable time. The model591

accuracy was tested by comparing it to Modelica simulations of both a validated pipe model [58] and592
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a GenkNET DH system model consisting of detailed component models. For more information, please593

refer to [48].594

Appendix A.2. Substation model595

The substation model that is included in the OCP is the No HEx model derived and described596

in [6]. This model is based on a substation with two heat exchangers, one for space heating (with597

radiator heating) and one for domestic hot water (DHW). Although the building heating system and598

the heat exchangers are modelled, the heat demand profiles are determined in advance [42], hence599

no building structure model is included. The No HEx model is a simplified version of the original600

detailed substation model. No HEx only includes a 2D look-up table that gives the primary return601

temperature exiting the substation in function of the space heating and DHW heat demand and the602

incoming primary supply temperature.603

Again, this model was tested and verified by comparing it with simulation of a GenkNET DH604

system model consisting of detailed component models.605

Appendix A.3. Heat pump model606

The GenkNET central heat pump is an electric air-to-water heat pump. An important parameter is607

the coefficient of performance (COP). This is the ratio of Q̇gen the heat supplied to the DH system to Ẇ608

the electrical power required.609

COP =
Q̇gen

Ẇ
(A5)

Representing a heat pump by a Carnot cycle, the COP can be expressed as a function of the610

condenser and evaporator temperatures, corresponding to Tgen, sup and Te, the DH supply and ambient611

air temperatures, respectively. As real heat pumps do not follow the ideal Carnot cycle, an additional612

efficiency ηC is introduced, taking the value of 0.6 [42]. ηC incorporates the efficiency loss due613

to non-adiabatic compression, isenthalpic expansion, non-isothermal heat exchange, etc. The air614

temperature Te corresponds to the typical meteorological year in Uccle (BE).615

COP = ηC
Tgen, sup

Tgen,sup − Te
(A6)

The plant then delivers heat to the DH system, according to Equation A7, with ṁgen, Tgen,sup and616

Tgen, ret the DH mass flow rate, supply and return temperatures at the plant, respectively.617

Q̇gen = ṁgencp(Tgen,sup − Tgen, ret) (A7)

The following constraint to limit temperature ramping is added:

−10 °C
3600 s

∆t ≤ Tgen,sup, i − Tgen, sup, i-1 ≤
−10 °C
3600 s

∆t (A8)

This equation limits the supply temperature changes between two points in time (i and i-1),618

separated by ∆t seconds in accordance with EN 13941 [59]. Additionally, the supply temperature can619

only change between the nominal value Tsup, nom and a temperature that is 10 °C higher, giving it the620

required degree of freedom to activate network flexibility:621

Tsup, nom ≤ Tgen, sup ≤ Tsup, nom + 10 °C (A9)

The heat output is only constrained to be positive, as in Equation A10. There is no maximum622

value the heat output can take, nor any limit on how fast the heat output can increase. However, with623

the temperature ramping constraint in place and the GenkNET heat demand profiles determined in624

advance, the values the plant heat output can take will at all times be acceptable.625
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0 ≤ Q̇gen (A10)

Appendix A.4. Base and peak plant model626

In a second possible heat generation site, a base and peak plant work together. The base plant is627

cheap, but has a maximum heat output that is insufficient to deliver all heat demand. The peak plant628

is more expensive, but can supplement the base heat output to deliver all heat demand. In this case629

peak shaving could reduce operational costs.630

The base and peak plant are modelled as follows:

Q̇gen = Q̇b + Q̇p = ṁgencp(Tgen, sup − Tgen, ret) (A11)

with Q̇gen the total heat generated by both base and peak plant and Q̇b and Q̇p is the heat generated631

by the base and peak unit separately.632

Along with the constraints in Equations A8 and A9, the following limits on heat output are also
included:

0 ≤ Q̇b ≤ Q̇b, max (A12)

0 ≤ Q̇p (A13)

The base plant heat output is limited by Q̇b, max. The peak plant, just like the heat pump, does not have633

any limit on the maximum power output. Again, the heat output will be limited due to the pre-defined634

heat demand profiles and supply temperature constraints.635

Appendix A.5. Optimal control model settings636

The horizon of the optimisation problem is 24 hours, with a time step that changes through time,637

but is always smaller than 5 minutes. Each pipe in the network contains at least 3 and at most 22638

finite volumes. These measures keep the CFL-number as close to 1 as possible and the problem size as639

limited as possible. The combination of all component models previously presented with mass and640

energy balances, leads to a non-linear program that is solved in modesto [39] with ipopt [60].641

References642

1. European Commission. Statistical office of the European Union.; 2019.643

2. Fleiter, T.; Steinbach, J.; Ragwitz, M. Mapping and Analysis of the Current and Future (2020-2030)644

heating/cooling fuel deployment (fossils/renewables) September 2016.645

3. European Commission. An EU Strategy on Heating and Cooling, 2016.646

4. Frederiksen, S.; Werner, S. District Heating and Cooling; Studentlitteratur, 2014.647

5. Connolly, D.; Lund, H.; Mathiesen, B.V.; Werner, S.; Möller, B.; Persson, U.; Boermans, T.; Trier, D.;648

Østergaard, P.A.; Nielsen, S. Heat Roadmap Europe : Combining district heating with heat savings to649

decarbonise the EU energy system. Energy Policy 2014, 65, 475–489. doi:10.1016/j.enpol.2013.10.035.650

6. Vandermeulen, A.; Van Oevelen, T.; van der Heijde, B.; Helsen, L. A simulation-based evaluation of651

substation models for network flexibility characterisation in district heating networks. Energy 2020, p.652

117650. doi:https://doi.org/10.1016/j.energy.2020.117650.653

7. Vandermeulen, A.; van der Heijde, B.; Helsen, L. Controlling district heating and cooling networks to654

unlock flexibility: A review. Energy 2018, 151, 103–115. doi:10.1016/j.energy.2018.03.034.655

8. Giraud, L.; Merabet, M.; Baviere, R.; Vallée, M. Optimal Control of District Heating Systems using Dynamic656

Simulation and Mixed Integer Linear Programming. Proceedings of the 12th International Modelica657

Conference; , 2017; pp. 141–150. doi:10.3384/ecp17132141.658

9. Bavière, R.; Vallée, M. Optimal Temperature Control of Large Scale District Heating Networks. Energy659

Procedia 2018, 149, 69–78. doi:10.1016/j.egypro.2018.08.170.660

https://doi.org/10.1016/j.enpol.2013.10.035
https://doi.org/https://doi.org/10.1016/j.energy.2020.117650
https://doi.org/10.1016/j.energy.2018.03.034
https://doi.org/10.3384/ecp17132141
https://doi.org/10.1016/j.egypro.2018.08.170


Version October 16, 2020 submitted to Energies 22 of 24

10. Ikonen, E.; Selek, I.; Kovacs, J.; Neuvonen, M.; Szabo, Z.; Bene, J.; Peurasaari, J. Short term optimization of661

district heating network supply temperatures. ENERGYCON 2014 - IEEE International Energy Conference;662

, 2014; pp. 996–1003. doi:10.1109/ENERGYCON.2014.6850547.663

11. Benonysson, A.; Bøhm, B.; Ravn, H.F. Operational optimization in a district heating system. Energy664

Conversion and Management 1995, 36, 297–314. doi:https://doi.org/10.1016/0196-8904(95)98895-T.665

12. Laakkonen, L.; Korpela, T.; Kaivosoja, J.; Vilkko, M.; Majanne, Y.; Nurmoranta, M. Predictive Supply666

Temperature Optimization of District Heating Networks Using Delay Distributions. Energy Procedia 2017,667

116, 297–309. doi:10.1016/j.egypro.2017.05.076.668
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14. Dominković, D.F.; Junker, R.G.; Lindberg, K.B.; Madsen, H. Implementing flexibility into energy planning671

models: Soft-linking of a high-level energy planning model and a short-term operational model. Applied672

Energy February 2020, 260, 114292. doi:10.1016/j.apenergy.2019.114292.673

15. Gu, W.; Wang, J.; Lu, S.; Luo, Z.; Wu, C. Optimal operation for integrated energy system considering674

thermal inertia of district heating network and buildings. Applied Energy 2017, 199, 234–246.675

doi:10.1016/j.apenergy.2017.05.004.676

16. Li, Z.; Wu, W.; Shahidehpour, M. Combined Heat and Power Dispatch Considering Pipeline Energy677

Storage of District Heating Network. IEEE Transactions on Sustainable Energy 2016, 7, 12–22.678

17. Tian, L.; Xie, Y.; Hu, B.; Liu, X.; Deng, T.; Luo, H.; Li, F. A Deep Peak Regulation Auxiliary Service Bidding679

Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage.680

Energies 2019, 12, 1–27.681

18. Kim, S.H. An evaluation of robust controls for passive building thermal mass and mechanical thermal682

energy storage under uncertainty. Applied Energy 2013, 111, 602–623. doi:10.1016/j.apenergy.2013.05.030.683

19. Baetens, R.; Saelens, D. Modelling uncertainty in district energy simulations by stochastic residential684

occupant behaviour. Journal of Building Performance Simulation September 2015, 1493, 1–17.685

doi:10.1080/19401493.2015.1070203.686

20. Strathclyde University. Demand Profile Genrator.687

21. Rysanek, A.M.; Choudhary, R. DELORES – an open-source tool for stochastic prediction688

of occupant services demand. Journal of Building Performance Simulation 2015, 8, 97–118.689

doi:10.1080/19401493.2014.888595.690

22. Yamaguchi, Y.; Kambayashi, Y.; Okada, T.; Shoda, Y.; Shimoda, Y. Community-Scale Household Activity691

Modelling Considering Household Heterogeneity Using Japanese Time Use Data. Proceedings of the692

Urban Energy Simulation Conference; , 2017; pp. 1–6.693

23. Oldewurtel, F. Stochastic Model Predictive Control for Energy Efficient Building Climate Control. Phd694

thesis, PhD thesis, ETH Zurich, 2011.695

24. Reinhart, C.F.; Cerezo Davila, C. Urban building energy modeling – A review of a nascent field. Building696

and Environment 2016, 97, 196–202. doi:10.1016/j.buildenv.2015.12.001.697

25. Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A698

review of bottom-up building stock models for energy consumption in the residential sector. Building and699

Environment 2010, 45, 1683–1697, [arXiv:1011.1669v3]. doi:10.1016/j.buildenv.2010.01.021.700

26. Cuypers, D.; Vandevelde, B.; Van Holm, M.; Verbeke, S. Belgische woningtypologie: nationale brochure701

over de TABULA woningtypologie. Technical report, 2014.702

27. De Coninck, R.; Helsen, L. Practical implementation and evaluation of model predictive control for an703

office building in Brussels. Energy and Buildings 2016, 111, 290–298. doi:10.1016/j.enbuild.2015.11.014.704

28. Arnold, M.; Andersson, G. Model Predictive Control of Energy Storage including Uncertain Forecasts.705

Power Systems Computation Conference (PSCC); , 2011; pp. 24–29.706

29. Bruninx, K.; Patteeuw, D.; Delarue, E.; Helsen, L.; D’Haeseleer, W. Short-term demand response707

of flexible electric heating systems: The need for integrated simulations. International Conference708

on the European Energy Market, EEM; IEEE: Stockholm, Sweden, 2013; Number May, pp. 28–30.709

doi:10.1109/EEM.2013.6607333.710

30. Verrilli, F.; Parisio, A.; Glielmo, L. Stochastic Model Predictive Control for Optimal Energy Management of711

District Heating Power Plants. 2016 IEEE 55th Conference on Decision and Control; , 2016; Number Cdc.712

https://doi.org/10.1109/ENERGYCON.2014.6850547
https://doi.org/https://doi.org/10.1016/0196-8904(95)98895-T
https://doi.org/10.1016/j.egypro.2017.05.076
https://doi.org/10.1016/j.energy.2018.09.141
https://doi.org/10.1016/j.apenergy.2019.114292
https://doi.org/10.1016/j.apenergy.2017.05.004
https://doi.org/10.1016/j.apenergy.2013.05.030
https://doi.org/10.1080/19401493.2015.1070203
https://doi.org/10.1080/19401493.2014.888595
https://doi.org/10.1016/j.buildenv.2015.12.001
http://xxx.lanl.gov/abs/arXiv:1011.1669v3
https://doi.org/10.1016/j.buildenv.2010.01.021
https://doi.org/10.1016/j.enbuild.2015.11.014
https://doi.org/10.1109/EEM.2013.6607333


Version October 16, 2020 submitted to Energies 23 of 24

31. Wang, C.; Jiao, B.; Guo, L.; Tian, Z.; Niu, J.; Li, S. Robust scheduling of building energy system under713

uncertainty. Applied Energy 2016, 167, 366–376. doi:10.1016/j.apenergy.2015.09.070.714

32. Gao, D.c.; Sun, Y.; Lu, Y. A robust demand response control of commercial buildings for smart grid under715

load prediction uncertainty. Energy 2015, 93, 275–283. doi:10.1016/j.energy.2015.09.062.716

33. Rosenblueth, E. Point estimates for probability moments. Proceedings of the National Academy of717

Sciences, 1975, Vol. 72, pp. 3812–3814.718

34. Massrur, H.R.; Niknam, T.; Fotuhi-Firuzabad, M. Investigation of Carrier Demand Response Uncertainty on719

Energy Flow of Renewable-Based Integrated Electricity-Gas-Heat Systems. IEEE Transactions on Industrial720

Informatics 2018, 14, 5133–5142. doi:10.1109/TII.2018.2798820.721

35. Kitapbayev, Y.; Moriarty, J.; Mancarella, P. Stochastic control and real options valuation of thermal722

storage-enabled demand response from flexible district energy systems. Applied Energy 2015, 137, 823–831.723

doi:10.1016/j.apenergy.2014.07.019.724

36. Diehl, M.; Gerhard, J.; Marquardt, W.; Mönnigmann, M. Numerical solution approaches for725

robust nonlinear optimal control problems. Computers and Chemical Engineering 2008, 32, 1279–1292.726

doi:10.1016/j.compchemeng.2007.06.002.727

37. Lin, J.G.G. On min-norm and min-max methods of multi-objective optimization. Mathematical Programming728

2005, 103, 1–33. doi:10.1007/s10107-003-0462-y.729

38. Rantzer, J. Robust Production Planning for District Heating Networks. PhD thesis, Master thesis, Lund730

University, Sweden, 2015.731

39. Vandermeulen, A.; van der Heijde, B.; Vanhoudt, D.; Salenbien, R.; Helsen, L. modesto - a Multi-Objective732

District Energy Systems Toolbox for Optimisation. Solar District Heating Conference; , 2018.733

40. Wang, H.; Lahdelma, R.; Wang, X.; Jiao, W.; Zhu, C.; Zou, P. Analysis of the location for peak734

heating in CHP based combined district heating systems. Applied Thermal Engineering 2015, 87, 402–411.735

doi:10.1016/j.applthermaleng.2015.05.017.736

41. Vandermeulen, A.; Reynders, G.; van der Heijde, B.; Vanhoudt, D.; Salenbien, R.; Saelens, D.; Helsen, L.737

Sources of energy flexibility in district heating networks: building thermal inertia versus thermal energy738

storage in the network. Proceedings of Urban Energy Simulations Conference; , 2018.739

42. van der Heijde, B.; Vandermeulen, A.; Salenbien, R.; Helsen, L. Integrated Optimal Design and Control740

of Fourth Generation District Heating Networks with Thermal Energy Storage. Energies 2019, 12, 2766.741

doi:10.3390/en12142766.742

43. Remmen, P.; Lauster, M.; Mans, M.; Fuchs, M.; Osterhage, T.; Müller, D. TEASER: an open tool for743

urban energy modelling of building stocks. Journal of Building Performance Simulation 2018, 11, 84–98.744

doi:10.1080/19401493.2017.1283539.745

44. De Jaeger, I.; Reynders, G.; Ma, Y.; Saelens, D. Impact of building geometry description within district746

energy simulations. Energy 2018, 158, 1060–1069. doi:10.1016/j.energy.2018.06.098.747

45. Baetens, R.; De Coninck, R.; Jorissen, F.; Picard, D.; Helsen, L.; Saelens, D. OpenIDEAS – an Open748

Framework for Integrated District Energy Simulations. BS2015, 14th Conference of International Building749

Performance Simulation Association; , 2015; pp. 347–354.750

46. Serrano-Guerrero, X.; Escrivá-Escrivá, G.; Roldán-Blay, C. Statistical methodology to assess changes751

in the electrical consumption profile of buildings. Energy and Buildings 2018, 164, 99–108.752

doi:10.1016/j.enbuild.2017.12.059.753

47. Bünning, F.; Heer, P.; Smith, R.S.; Lygeros, J. Improved day ahead heating demand forecasting by online754

correction methods. Energy & Buildings 2020, 211. doi:10.1016/j.enbuild.2020.109821.755

48. Vandermeulen, A. Quantification and optimal control of network flexibility in district heating systems.756

PhD Thesis, under evaluation, KU Leuven, Belgium, 2020.757

49. Guelpa, E.; Sciacovelli, A.; Verda, V. Thermo-fluid dynamic model of large district heating networks for758

the analysis of primary energy savings. Energy 2019, 184, 34–44. doi:10.1016/j.energy.2017.07.177.759

50. Kudela, L.; Chylek, R.; Pospisil, J. Performant and simple numerical modeling of district heating pipes760

with heat accumulation. Energies 2019, 12. doi:10.3390/en12040633.761

51. Betancourt Schwarz, M.; Mabrouk, M.T.; Santo Silva, C.; Haurant, P.; Lacarrière, B. Modified finite762

volumes method for the simulation of dynamic district heating networks. Energy 2019, 182, 954–964.763

doi:10.1016/j.energy.2019.06.038.764

https://doi.org/10.1016/j.apenergy.2015.09.070
https://doi.org/10.1016/j.energy.2015.09.062
https://doi.org/10.1109/TII.2018.2798820
https://doi.org/10.1016/j.apenergy.2014.07.019
https://doi.org/10.1016/j.compchemeng.2007.06.002
https://doi.org/10.1007/s10107-003-0462-y
https://doi.org/10.1016/j.applthermaleng.2015.05.017
https://doi.org/10.3390/en12142766
https://doi.org/10.1080/19401493.2017.1283539
https://doi.org/10.1016/j.energy.2018.06.098
https://doi.org/10.1016/j.enbuild.2017.12.059
https://doi.org/10.1016/j.enbuild.2020.109821
https://doi.org/10.1016/j.energy.2017.07.177
https://doi.org/10.3390/en12040633
https://doi.org/10.1016/j.energy.2019.06.038


Version October 16, 2020 submitted to Energies 24 of 24

52. Borsche, R.; Eimer, M.; Siedow, N. A local time stepping method for thermal energy transport in district765

heating networks. Applied Mathematics and Computation 2019, 353, 215–229. doi:10.1016/j.amc.2019.01.072.766

53. Rein, M.; Mohring, J.; Damm, T.; Klar, A. Optimal control of district heating networks using a reduced767

order model. arXiv preprint arXiv:1907.05255 2019.768

54. Sartor, K.; Thomas, D.; Dewallef, P. A comparative study for simulating heat transport in large district769

heating networks. International Journal of Heat and Technology 2018, 36, 301–308.770

55. Wang, Y.; You, S.; Zhang, H.; Zheng, X.; Zheng, W.; Miao, Q.; Lu, G. Thermal transient prediction of district771

heating pipeline: Optimal selection of the time and spatial steps for fast and accurate calculation. Applied772

Energy August 2017, 206, 900–910. doi:10.1016/j.apenergy.2017.08.061.773

56. Vivian, J.; Monsalvete Alvarez de Uribarri, P.; Eicker, U.; Zarrella, A. The effect of discretization on the774

accuracy of two district heating network models based on finite-difference methods. 16th International775

Symposium on District Heating an Cooling; , 2018; pp. 1–10.776

57. Bennonysson, A. Dynamic Modelling and Operation Optimization of District Heating Systems. Doctoral777

thesis, Technical University of Denmark, Denmark, 1991.778

58. van der Heijde, B.; Fuchs, M.; Ribas Tugores, C.; Schweiger, G.; Sartor, K.; Basciotti, D.; Müller, D.;779

Nytsch-geusen, C.; Wetter, M.; Helsen, L. Dynamic equation-based thermo-hydraulic pipe model780

for district heating and cooling systems. Energy Conversion and Management 2017, 151, 158–169.781

doi:10.1016/j.enconman.2017.08.072.782

59. European Standard. EN 13941:2019 District heating pipes. Design and installation of thermal insulated bonded783

single and twin pipe systems for directly buried hot water networks.784

60. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search785

algorithm for large-scale nonlinear programming. Mathematical Programming 2006, 106, 25–57.786

doi:10.1007/s10107-004-0559-y.787

© 2020 by the authors. Submitted to Energies for possible open access publication under the terms and conditions788

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).789

https://doi.org/10.1016/j.amc.2019.01.072
https://doi.org/10.1016/j.apenergy.2017.08.061
https://doi.org/10.1016/j.enconman.2017.08.072
https://doi.org/10.1007/s10107-004-0559-y
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Uncertainties in district heating systems
	Robust control of energy systems
	Novelty and research questions

	Case study: GenkNET
	Methodology
	Deterministic optimal control
	Heat demand profiles
	Uncertainty analysis
	Step 1: Optimal control of each GenkNET version
	Step 2: Selection of 11 control strategies
	Step 3: Applying the 11 control strategies to all 100 GenkNET versions


	Results
	Operational heat pump optimisation
	Optimal control of the 11 selected versions
	Applying 11 different control strategies to all 100 GenkNET versions

	Peak shaving optimisation
	Optimal control of the 11 selected versions
	Applying 11 different control strategies to all 100 GenkNET versions


	Discussion
	How does the optimal network flexibility activation change when the building parameters/heat demand magnitude changes?
	How does the network flexibility performance change when the control strategy changes?
	Does this preliminary study lead to insights for a more robust activation of network flexibility?
	Remarks

	Conclusion
	Optimal control component models and settings
	Pipe model
	Substation model
	Heat pump model
	Base and peak plant model
	Optimal control model settings

	References

