Journal Pre-proof

ENERSY

A data-driven optimization framework for industrial demand-side
flexibility

Carlo Manna, Manu Lahariya, Farzaneh Karami, Chris Develder

PII: S0360-5442(23)01131-3
DOI: https://doi.org/10.1016/j.energy.2023.127737
Reference: EGY 127737

To appear in:  Energy

Received date: 20 October 2022
Revised date: 6 March 2023
Accepted date: 3 May 2023

Please cite this article as: C. Manna, M. Lahariya, F. Karami et al., A data-driven optimization
framework for industrial demand-side flexibility. Energy (2023), doi:
https://doi.org/10.1016/j.energy.2023.127737.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.


https://doi.org/10.1016/j.energy.2023.127737
https://doi.org/10.1016/j.energy.2023.127737

Short Title of the Article

Nomenclature

Abbreviations

DA Day Ahead

TSO  Transmission System Operator
DSO  Distribution System Operator
DSF  Demand-side Flexibility

ECT  Evaporative Cooling Tower

IA Interval Arithmetic

Indices, sets and functions

t index of time, t € T

k index for scenario, k € K

n index for neurons in neural network, n € N
m index for neural network layer input, m € M
/ index for neural network layer, / € £

0 index for order block, 0 € ©@

F,(-) nonlinear function
Parameters
At Time discretization step [s]
To#  Estimated outdoor temperature [Celsius]
Jig Estimated relative humidity [%]
or Estimated heat load (production process) [kJ]
Q’ Estimated heat load (heat process) [kJ]
A Estimated atmospheric pressure [Pa]
U¢, D¢ Estimated upward and downward sequence of activation calls (binary)
Q°, Q¢ Uncertainty budget denoting maximum numbers of upward and downward activation calls
P Battery loss coefficient
., ny Battery charging and discharging efficiency
C Provider fixed cost in using flexibility [€]
y) DA energy market price [€/MWh]
A4, A4 Upward and downward market prices [€/MWh]
A*, A~ Surplus and deficit unbalancing cost [€/MWh]

, P Maximum and minimum power for the cooling fan [kW]

I~

—E
£E , P Maximum and minimum charging/discharging power for the battery [kW]
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E Maximum and minimum energy capacity for the battery [kWh]

s

e

T, T Maximum and minimum temperature for the water basin [°C]
Decision variables
D Electrical power [kW]
pP Total electrical power to buy/sell in the DA energy market [kW]
r Fan cooling controlling power for the planned working cycle. Contribution to the total power pP [kW]
pBC, pPC Battery charging and discharging power for the planned working cycle. Contribution to the total power pP [kW]
cYP, PV Upward and downward capacity reservation [kW]
p, pdh Battery charging and discharging powers [kW]
Auxiliary variables
T Water basin temperature [°C]
p, p*d Activation upward and downward powers [kW]
p*t, p> Surplus and deficit electrical powers [KW]
E State-of-charge for the battery [kWh]

a neuron activation (binary)
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ABSTRACT

Securing profits while offering industrial demand-side flexibility in both energy and reserve
markets is critical to ensure the profitability of energy-intensive industrial plants to make available
their flexible assets in the electricity markets and hence accelerating the energy transition. Proposing
efficient bidding strategies for simultaneous participation in the energy and reserve market is challeng-
ing since it requires the integration of different market mechanisms in a single optimization problem
(combining energy and reserve markets), as well as an accurate mathematical model of industrial
processes from which to obtain energy flexibility. Often, such mathematical models are either not
available or are described through complex simulators, making the design of a computationally
efficient bidding strategy a complicated task.

This paper introduces a novel framework to support energy-intensive industrial plants to offer
energy flexibility in the joint energy and reserve market. We use a neural network to model the
complex nonlinear dynamics of the industrial flexible process. Then, to reduce the complexity of
the resulting optimization process we convert the neural network into linear constraints, formulating
the problem of bidding energy flexibility into the electricity market as a mixed-integer linear program.
The uncertainties of the process variables are considered using a scenario-based approach.

A realistic simulation considering the case of an evaporative cooling tower used in the chemical
industry, participating in the Belgian electricity market is carried out to demonstrate the applicability
of the proposed scheme.

1. Introduction

1.1. Motivation

Sustainable development requires transition in energy
consumption habits and human activities [21]. A shift from
the use of fossil and non-renewable resources to the ex-
ploitation of renewable ones is now considered as crucial
to preserve the future environment and meet sustainable de-
velopment goals. To accomplish these objectives, the global
energy system must undergo a profound transformation, by
enhancing energy efficiency and investing in renewable en-
ergy solutions. In this context, the idea of energy flexibility
or Demand-Side Flexibility (DSF) has become a common
concept to encourage the integration of renewable energy
sources (RES) into the power systems, and hence to accel-
erate the energy transition [18, 33]. Energy flexibility refers
to the ability of a generic prosumer to change their energy
consumption patterns based on external signals. It relates to
the ability to address short-run and unexpected imbalances
between demand and supply due to the increasing penetra-
tion of RES.

For this reason, DSF is now seen as an essential fea-
ture to turn the current energy-inefficient system into one
dominated by renewable energy. New flexibility may come
from various sources that will have to be exploited over
the next years, e.g., through new storage technologies, in-
creased sectorial coupling, industrial demand-side flexibility

ORCID(S):

management], or improvements in operational efficiency
through technological development [1, 39]. Industrial pro-
cesses/plants are extensive energy consumers and play a key
role in the reduction of energy demand and in developing
advanced strategies based on energy flexibility [37].

In a liberalized market environment, the actual flexibility
dispatch is largely driven by the offering strategy of the
entity who owns and operates these flexible assets. A private
investor/operator aims at maximizing its expected profit.
Typical revenue streams originate from price arbitrage in
day-ahead wholesale energy markets and the provision of
ancillary services such as operating reserves. In this regard,
efficient offering strategies often require the simultaneous
preparation (co-optimization) of bids in multiple markets in
order to improve the economic value of flexibility assets as
shown in many studies [11, 26, 42, 51];

For this reason, the aim of this paper is to propose a novel
optimization framework to enable bidding energy flexibility
of industrial processes in the both energy and reserve market.

In order to design such a bidding strategy, it is necessary
to develop models with the capability of predicting the effect
of control settings on the systems’ dynamic behavior. How-
ever, modelling industrial processes and their components
is very challenging, and often the traditional models and
parameters describing the process dynamics to be controlled
are not available in practice [24, 6].

Unlike analytical models, data-driven approaches [17],
such as neural networks, are very accurate and do not require
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the knowledge/availability of the mathematical equations
and internal parameters of the process to be controlled
[44, 36, 9]. However, using nonlinear data-driven models
in complex optimization problems either implies the use
of nonlinear iterative solution methods (which are often
computationally expensive) or heuristic search (that do not
guarantee high-quality solutions [23]).

To overcome the aforementioned computational issues,
in this paper, we first use a neural network to accurately
model the (energy-flexible) industrial process and then,
through an exact linear transformation, we encode such a
neural network in a number of linear constraints, formulat-
ing the problem of bidding flexibility in the joint energy
and reserve market as Mixed-Integer Linear Programming
(MILP). In this way, the resulting optimization problem can
be solved efficiently using standard mathematical solvers
such as: Gurobi, Cplex, etc. Finally, we further reduce the
complexity of the initial formulation using various tech-
niques, including ReLU pruning for weight matrix sparsi-
fication and interval arithmetic [46].

As a case study, to demonstrate the applicability of the
proposed approach, we focus on evaporative cooling towers
(ECT) as part of the chemical process industry and one of
the major energy demand drivers in the industrial sector
[4]. In particular, we simulated an ECT participating in
the joint energy and reserve Belgian market for 24 hours.
We used simulated data for the ECT process variables and
real data for the weather and the electricity market prices.
We first analyze the performances for two case studies in
which the flexibility of the ECT is augmented by coupling it
with electrical storage and then evaluate the computational
aspects.

1.2. Related work

A vast portion of the recent literature in the context of
proposing bidding strategies for industrial settings focus on
the use of electrical energy storage.

Despite the fact that electrical energy storage is difficult
to model accurately due to a number of factors includ-
ing uncertainty parameters, state-of-charge estimation and
performance decay, most of the recent approaches assume
energy storage as either linear or simplified nonlinear models
with uncertainty parameters and propose bidding strategies
using various linear optimization techniques [15].

On the other side, another portion of literature, instead
of considering electrical storage as the only flexible asset of
an industrial process, focuses on considering the industrial
process itself (or some of its components) as a source of
energy flexibility. Such a distinction adds to the problem a
further degree of complexity due to the process modeling
and the impact from assuming flexible operations on the
process variables.

In this regard, different approaches have been proposed
for industrial evaporative cooling tower (ECT) management
systems aiming to improve energy efficiency and reduce
carbon emissions [35]. ECT system is a (energy-intensive)
thermal utility process, where thermal inertia is linked to the

core process, which allows it to be controlled in a flexible
manner.

In general, for ECT systems, two types of approaches
are found in the literature. The first type of methods are
simulation-based models for the assessment and predic-
tion of key performance indicators such as costs, energy
and water demand. They are addressed in particular either
with mathematical optimization methods [12] or scenario-
based simulation [32, 41]. Such methodologies use complex
mathematical models or simulators to describe the physical
process for the ECT system and its components. A sec-
ond type of techniques are mainly operational methods for
specific activities (e.g. monitoring of water temperatures,
quality, reduction of down-times by optimizing maintenance
activities, etc.) based on short-time forecasts and black-box
approaches to model the ECT systems [20, 28, 43, 45].

However, none of the above methods are developed to
exploit the energy flexibility of the ECT industrial process
into the electricity market. Consequently, the proposed op-
timization strategies do not consider the market mechanism
and their operational constraints or other random variables
such as market prices, reserve activation calls, etc.

In this regard, several studies have proposed different
strategies to exploit industrial process energy flexibility into
the electricity market. The authors in [34] propose a syner-
getic approach of data-driven and scenario-based simulation
to evaluate different demand-side strategies to improve the
overall energy efficiency, while the work in [16] report a case
study for Denmark’s electricity market, where various ECT
management strategies have been applied in order to offer
energy flexibility in different markets (e.g.: day-ahead, re-
serve provision etc.). However, such aforementioned strate-
gies were predefined and not optimally planned through
optimization techniques.

Conversely, optimization-based approaches can be found
in [3] where a mixed-integer programming model is pro-
posed for a hybrid flow shop schedule with preventive main-
tenance actions, to minimize energy cost for an enterprise
under the time-of-use tariff scheme. Moreover, the work
in [5] proposes a data-driven method to integrate energy
flexibility in production planning, while in [47] the flexibility
of a cryogenic energy storage is exploited in order to perform
load shifting. Both methods aim to reduce the plant running
cost by storing purchased energy and selling it back to the
market during higher-price periods and creating additional
revenue by providing operating reserve capacity.

On the same line, the works in [8, 10, 38, 48, 49, 50]
for aluminum smelters and steel plants, which analyze the
opportunity to participate in the day-ahead energy and re-
serve market to reduce the overall production costs. All these
approaches are based both on the use of simulation models of
the process to investigate the opportunity to participate in the
energy market [8, 10, 38], and on proper bidding strategies
through MILP formulation and the use of approximate linear
models of the process [48, 49, 50].
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Although the aforementioned methods can be considered
as bidding strategies, they are aimed at participating in indi-
vidual markets, while, as mentioned in the §1.1, an efficient
way to maximize the market profits is to develop bidding
strategies for simultaneous participation in multiple markets.

On this line of research, the authors in [19] developed a
bidding strategy for the joint day-ahead and reserve market
for a pulp and paper mill, based on a two-stage stochastic
programming approach. Nonetheless, they use a linear sim-
plified model to represent the pulp/paper mill plants, due to
the lack of a more accurate mathematical model and process-
dependent parameters.

1.3. Research gaps and main contributions
In the body of literature surveyed, we found two main
research gaps:

1. the first gap is that the reported bidding strategies are
limited to participation in single markets, while there
is a lack of methods that explore the opportunity to
participate in multiple markets (e.g. day-ahead, re-
serve market, etc.) at the same time (co-optimization);

2. the mathematical models used to describe the process
to be controlled and used in the bidding strategies are
mainly approximate analytical models or simulators.
However, such models assume the knowledge of pro-
cess parameters that are hardly available in practice
[4, 35]. Conversely, a little has been done in the field
literature to propose optimal bidding methods that
make use of data-driven approaches to describe the
process model.

Regarding point 1, one of the main contributions of this
paper is to propose an innovative data-driven optimization
framework to support the valorization of the energy flex-
ibility of an industrial cooling tower system in the joint
energy and reserve market. This is particularly complex, as
it is necessary to consider, simultaneously, different market
mechanisms, which in turn lead to different operational
constraints deriving from market-specific implementation
rules and different forms of uncertainties. As such, we have
considered the uncertainty of process load (i.e., the thermal
energy required to run the specific industrial operations),
market prices, reserve activation requests from the Trans-
mission System Operator (TSO) and other contextual ex-
ogenous variables (i.e.: outdoor temperature, humidity and
atmospheric pressure) which are incorporated using a set of
scenarios generated from available day-ahead forecasts.

Then, regarding the point 2, in this paper we use black-
box methods (i.e. deep neural networks) to model the non-
linear industrial cooling tower process, and use this model
in an optimal bidding strategy through a Mixed-Integer
Linear Programming (MILP) formulation. This is not a
straightforward task, as using nonlinear black-box models
in optimization problems implies the use of Local Search,
meta-heuristics, or Genetic Algorithms [23], which often do

not guarantee high quality solutions. For this reason, we first
develop a neural network to model the ECT process using
realistic data and then, through an exact transformation we
convert it into a set of linear constraints with binary vari-
ables, encoding a deep (nonlinear) neural network transition
model into a MILP model. In this way, we accurately ap-
proximate cost-optimal solutions of the original non-linear
optimization problem that can be solved through a standard
mathematical solver (e.g., Gurobi, CPLEX, etc.).
In summary, the main contributions of this paper are:

e A data-driven stochastic optimization model to ad-
dress the participation of power-intensive industrial
processes in the energy and reserve markets;

e A mixed-integer linear formulation of the original
black-box optimization problem, using a neural net-
work to model the energy-intensive process. Such a
formulation guarantees cost-optimal solutions and the
computational tractability of the problem.

Moreover, we remark that the proposed approach can
be generalized to other industrial demand-side applications
where a computationally tractable mathematical model of
the process involved is not available, while it is possible to
describe such a system dynamic using a neural-networks in
a sufficiently accurate manner.

The remainder of this paper is organized as follows:
Section 2 discusses the proposed methodology in detail,
numerical experiments are described in the Section 3 and
results are reported in the Section 4. Finally the conclusions
are summarized in the Section 5.

2. Proposed methodology

2.1. Demand-side flexibility in the electricity
market

In the energy sector, DSF refers to the possibility of
adjusting the electrical consumption or the electrical produc-
tion of an installation or process in response to an external
signal, as for instance a price signal, an activation signal
from the grid operator for dispatching balancing reserves,
etc. Therefore, DSF can be implemented and exploited in
different ways depending on the type of electricity market
and grid service in which it is delivered.

As mentioned in §1.3, this paper focus on two type of
markets: the energy and the tertiary reserve market.

In the energy market, DSF means taking advantage
of price fluctuations on the energy exchanges. This allows
shifting energy consumption to moments with lower prices,
and energy production (or injection of energy surplus) to
moments with higher prices. On the other hand, in the
reserve market, DSF is delivered by either lowering or
increasing the power consumption (denoted as upward and
downward reserve activation respectively) up to a specific
(pre-contracted) amount to balancing the power grid follow-
ing a signal sent by the grid operator which then compen-
sates providers for the provision of these balancing services.
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Offering flexibility in the aforementioned markets means
submitting bids that consist of both energy quantities (in
the energy market) and upward/downward power capacity
quantities (in the reserve market) which are remunerated
at certain market prices to the flexibility provider. In both
cases, those bids are the result of optimal strategies which
calculate the offered quantities taking into account market
price estimates and operational/technological constraints of
the providers.

2.2. Assumptions on Market Structure

The industrial facility participates in the DA energy
market with bids to buy and sell energy. Furthermore, it sells
manual reserve in the tertiary reserve market (in both upward
and downward directions). The tertiary (or non-spinning)
reserve is a service manually activated by the transmission
system operator (TSO) to handle forecast errors and/or to
replace the secondary reserve. The DA energy market is a
double-sided auction, where market agents may present sell
and buy hourly bids that cover the 24 hours of the next day
and are paid at a marginal price.

Downward and upward tertiary reserve bids are pre-
sented to the TSO until a specific hour (may be different
from country to country) of the day prior to the operating
day, and they can be updated during the operating day. The
reserve bids comprise a quantity (MW) and an hourly price
(Eur/MWh) and they are dispatched by an economic merit
order in real-time. The downward and upward reserves are
remunerated by the respective marginal prices. There are
two possible market-clearing schemes. A sequential market
where energy is traded first and reserves are contracted
afterward (typically European). A joint market where energy
and reserves are jointly dispatched (typically American).
The approach described in this paper can be applied to both
market schemes. In particular, in this paper, we refer to the
Belgium electricity market, where the most simple form of
daily bids consists of 24 offers of 1-hour block each.

All the participants are assumed as price-takers, as the
exchanged volume of energy by each individual participant
is not so large as to influence the market price. Each par-
ticipant has access to time series of past market prices and
exchanged quantities of energy and capacity reserves which
they can use to analyze and predict the next day’s market
prices.

In the following section, the proposed approach for si-
multaneous participation in the energy and tertiary reserve
market for a DSF provider with an industrial evaporative
cooling tower process is detailed.

2.3. Bidding Optimization Strategies for the ECT
flexibility valorization in electricity markets

In this section, two mathematical models to bid ECT
flexibility in the joint energy and reserve market are formu-
lated and solved.

The first model considers the ECT system as the only
flexible asset, while the second one combines the ECT with
another flexible asset, i.e. an electrical storage system.

For sake of clarity, we name the first approach as cooling
tower flexibility strategy (in short C-Flex), and the second
one as cooling tower with storage flexibility strategy in short
CWS-Flex.

2.3.1. C-Flex mathematical model
The objective function along with the constraints are
given below:

expected profit (reserve m.)
7\

expected profit (energy m.)

f_/% r )
max Y pP(3, = C) At + Y [eUPA + PV |
t t

expected profit from reserve activation
7\

g T [mid-cor mu-co] O
7expected penalty
& Dl Ao 4]
k.t
S.t.:
iy = U @
A =V D! 3)
P <piy <P, @)
Ty = Ful00 0f O) T A Apopi) (9
T,<T} < T, 6)
T < lez < Tini 7
T S T80 < Teng ®)
Pre =P+ Dy = P+ B~ P ©)
h P 20 (10)
(e 20 (11)

The objective function (1) has four main terms. The first
term in line 1 (left side) describes the expected profits gained
from the energy market, expressed as the offered energy
quantities plD at the predicted market prices 2,. The quantity
C, denotes a generic fixed operational cost for the flexibility
provider. On the other hand, the second term in line 1
(right side) represents the expected profit from the reserve
market formulated as the product of the offered capacity
reservations ctU P (upward) and ctD W (downward), multiplied
the estimated remuneration prices ir” and if, respectively.

The third term (line 2) represents the expected profit
from the upward and downward reserve activation calls at
the operating stage. This is expressed as the average sum
of the upward (pi‘t) and downward (pzi) capacity activation
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multiplied the corresponding estimated remuneration prices
i?“ and ifd, over the total number of scenarios K.

Finally, the last term (line 3) reports the expected penalty
incurred in case there is any surplus or deficit of power with
respect to the quantity committed in the DA market (both
energy and reserve), over the total number of scenarios K.
In particular, pit (pi;) denotes the surplus (shortfall) of
power supplied during the operational stage following an
activation call, in relation to the amounts contracted in the
DA stage (line 1). Such deviations (surplus or deficit) will be
penalized according to the estimated penalty prices )A»;r and
it_, respectively.

The uncertainty of calling the capacity of reserve market
from the TSO is modeled by implementing a budget of
uncertainty for the maximum number of reserve calls for
each scenario. In particular, in this formulation, two uncer-
tainty budgets are introduced, i.e., QE and QE, indicating
the maximum number of intervals that up and down reserves
are called from the TSO, respectively. For example, if we set
QE = 4, we are assuming that a maximum of 4 timesteps
of up reserve calls occur from the TSO for scenario k with
k=1.

The aux111ary parameters U ca“ and DC"‘tIl with their re-
lated subscripts define the estlmated time intervals that the
facility is called for up and down reserve respectively, hold-
ing the relation Y, Ulfi" = Qg (028 lA)z*j‘r" = Q]kj ), where Qg
denotes the total number of reserve activation calls for the
scenario k. Hence, if UC‘J‘]l = 1, this mean that at timestep 2
of the scenario 3, the upward reserve must be deployed.

Constraints (2-3) determine the power for upward and
downward activation respectively taking into account the
quantities U C"‘“ and D““]l In particular, they state that these
activated quantltles are always equal to the full committed
capacity cUP or cDW Notice that it must hold U ¢ T DZ <1
foreacht = 1...T and k = 1... K. This 1mp11es that an
upward and a downward activation call cannot occur at the
same time step.

Constraint (9) defines the controlled power input as a
contribution of three elements: (i) the power requested in the
DA market p?, (if) the power from the downward or upward
activation pz‘}t or pi"‘t, respectively, and (iii) an additional
power pzt or p;‘t Such an additional power component
represents, respectively, a surplus or a deficit in electri-
cal power with which to scale the quantity p,, whether
necessary for the purpose of complying with other tech-
nological constraints. These constraints are the maximum
and minimum controlling power (4), the boundaries of the
basin temperature (6) and its initial and final conditions (7)
and (8), respectively. Then, constraints (10) and (11) state,
respectively, that the surplus/deficit power components and
the upward/downward capacity reservations must be non-
negative quantities.

Finally, the eq. (5) represents the mathematical model of
the ECT system which describes the temporal evolution of

the water basin temperature Tk 1

This is a nonlinear model represented through a neural
network. In particular, at each time step ¢ and for each
scenario k, this model receives as input the estimation of
the outdoor temperature 7 ]z‘:t, the humidity H, ks and the
atmospheric pressure Ak’,, along with the estimated heat
load for the production process Qk, The other inputs are

the water basin temperature T,f , and the control variable p; ,
(i.e. electrical power of the cooling fans).

2.3.2. CWS-Flex mathematical model

This mathematical model differs from the previous one
by adding additional constraints that take into account the
combined use of the ECT system with an electrical storage.
Hence, the objective function remains the relation (1), while
the related constraints are reported below:

eqs.(2) — (8)

pP=p; +pC=p° (12)

P = Py + By — P+ Py = B+ 0 =y, (13)
Epi1 = pEy+n. (pi'j,+pt ©) —ng GG +pPD)] Ar (14)

P+ 000 < P (15)
P < P+ <P (16)
E<E,<E (17)
E o S B, < Epg (18)
E 4 <E,< Eend (19)

kt’pkt’pkt’pkt) = (20)
(", PP by D) >0 1)

where the set of constraints (2)-(8) are identical to the set of
constraints in the section 2.3.1.

The condition (12) states that the electrical power from
the DAM is the sum of the planned electrical power for the
cooling fan pf and either the planned charging or discharging
power (i.e., p?c or p?D) for the electrical storage. These
planned quantities are scenario independent and they con-
cern the electrical powers accounted for the DAM offers.

Equation (13) defines the electrical power fan p; , for the
scenario k as the sum of the planned power for the cooling
fan p,F, plus other scenario-dependent quantities such as
the power from either the downward or upward activation
(ie., pk . or pk . respectively); the power to compensate

either a surplus (p ) or a deficit (p ) in the total electrical
load to satisfy any other system constralnts and, finally the
power to either charge (p ) or discharge (pdh) the electrical
storage. Equation (14) tracks the evolutlon of the state-of-
charge for the battery system, while constraints (15)-(16)
define the minimum and maximum charging and discharging
battery power. Then, (17) defines the battery capacity, while
constraints (18-19) set the related initial and final conditions
for the state-of-charge. Finally, (20) and (21) define the non-
negative variables in the model.
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2.4. MILP encoding using neural network

In this section we explain the procedure we used to
reformulate the neural networks in (5) as linear constraints
and hence, to convert both optimization problems reported
in the §2.3.1 and §2.3.2 to an equivalent MILP.

First, we describe the fundamental approach to reformu-
lation, and then we describe additional methods to reduce the
complexity of the fitted neural network in order to improve
solver performance.

2.4.1. Reformulation of ReLU as linear constraints
Let n be the number of neurons, / the number of layers
and m the number of inputs for that layer. Moreover, let
xi}}n’m denoting the m-th input at the neuron » of the layer /.
In a neural network, the inputs for each layer are first

combined as:

! _ -1 _I-1
yk,t,n =au0t Z Ay m xk,t,n,m (22)
m

where a,, ,, are the coefficients of the weight matrix (n, m+1)
of the layer /.

The output of the linear combination (22) becomes the
input of the chosen activation function. In this approach,
since we use ReLU activation function, the final output of
the neuron » at the layer / is:

Vien = max(©0, ¥, ) (23)

Equation (22) represents a linear relation between the
inputs and outputs for each layer [, therefore it can be
encoded inside the optimization models in the § 2.3.1 and
§ 2.3.2 without any problems as linear equality constraint.

Conversely, (23) is a non-linearity that needs to be refor-
mulated, using the following set of constraints:

Vien 2 Virn (24)
Viun S L™ g,y (25)
Vien 20 (26)
Vian S Vg = L™ (1= @) @7)
Ui € {0, 1} (28)

where the value for the parameters L™ and L™" need
to be chosen large enough to guarantee the respect of the
ReLU activation function (23). Such a method is described
in the next section.

neuron is ¥ < 0, then the corresponding binary variable
is 0 and (25) and (26) constrain the neuron output y to 0.
Conversely, if the input to the neuron is y! > 0, then the
binary variable is 1 and (24) and (27) constrain the neuron
output y to the input y'.

Once we have defined the neural network using (22) and
(24) - (28), we replace those conditions in (5), obtaining a
MILP formulation for the optimization models in § 2.3.1 and
§2.3.2.

2.4.2. Weights matrix sparsification

As aforementioned in the § 2.4.1, the minimum and
maximum bounds on each neuron output L™ and Lmax
have to be chosen large enough to bind the conditions (24)-
(28), but also as small as possible to facilitate tight bounds
and hence improve the computational efficiency of the MILP
solver.

For this reason, we compute these bounds using interval
arithmetic (IA) [30]. In IA, the bounds on each neuron
are determined solely by considering the bounds on the
variables in the previous layer.

Moreover, we adapt the idea of ReLU pruning [46] in this
context, to prune away ReLU functions that are not necessary
and hence reduce the total number of binary variables. In
particular, first we calculate the bounds ani“ and ana"
for each neuron using IA. Then, we select, for each pair
(ani",LL“a") associated with neuron n, those that have the
limits (ani“,LL“a") both positive or both not positive (i.e.
< 0). In the first case, this means that such ReLLU will be
always active. That is, according with (23), it holds that
Vion = yﬁc‘ in for any input yi’ . Conversely, in the second
case, the ReL.U will be always inactive, i.e. y.,, = 0 for
any input yi’ i Finally, if a ReLU is always active, it will
be replaced with an identity function, while in the other
case with a null function. In both cases, we reduce the total
number of ReLU activation functions and therefore the need
to introduce a binary variable as described in (24)-(28).

3. Experimental details

3.1. Simulation Setup

As a test case, we considered an ECT owner who par-
ticipates in the energy and tertiary reserve market during
2017. To simulate realistic data, we use the white-box model
outlined in previous literature [22]. This thermodynamic-
based white-box model of the cooling tower system is rep-
resented by a system of first-order differential equations that
are based on the laws of heat transfer and mass conservation.
This model is presented in (29) where T]i ; denotes the basin

temperature. This model is defined using Qi , the process
heat [W], Q;C . the cooling capacity [W], c,, the specific heat

capacity of water [kJ /kg-K]1,V,, the water volume [m3] and
., the water density [kg/m3].

b P _ o
o, _ Qi = Qs

We introduce one binary variable for each neuron in the ot c V.. P 29)
. . w w w
hidden layers of the neural network. In case the input to the
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Q2t=,hw-cw-(Tﬁt—Iﬁg (30)
o = 1 (HE = HED 31

The process heat (Qp ) is expressed as in (30) where 1,

denotes the mass ﬂow of water [Kg/s]. Tp and Tb are
the process water temperature [K] and the water basm
temperature [K], respectively. Note that the 71, is based on
an individual industry, each with a different mass flow of
its process water. The process heat (Q’ ;) is expressed as in

(31). rin,, is the mass flow of air [Kg/s], Hae and Ha are the
entering and leaving air enthalpy [kJ / kg K 1, respectlvely
Enthalpies can be calculated using humidity rates and tem-
perature [40]. The entering air enthalpy is dependent on the
temperature of the ambient air, and the leaving air enthalpy is
dependent on the leaving air temperature. The mass flow rate
of air depends on the power that is supplied to the fans and
is expressed in (32). This will affect the basin temperature.

0 = 2-Pp,- Af,r “Nfan " Nmotor o)

2
65+K, +2-

fan

where Py is the electric fan power [W], A fr is the tower
frontal area [m2], A fan is the fan area [m2], fan is the fan
efficiency %, 7,010 15 the motor efficiency % and K|, is the
eliminator coefficient and if it is unknown, it is set equal to
1. The air density is represented by p, and is calculated for
the mixture of dry air and water evaporation

We can estimate the basin temperate, T , based on the
fan powers, process heat, and env1r0nmental data. For the
cooling process, data is simulated for each minute from Jan
1% 2017 to 31% Dec 2017, i.e. 60 minutes X 24 hours X
365 days = 525, 600 observations. Thus, the duration of each
timeslot is 1 minute and we create 1,440 time slots for each
day of 24 hours. Each day starts from midnight (00:00) and
ends 24 hours later (23:59) and we represent each timeslot
as a decimal value € [0.00, 24.00) (for example, a time slot
with the value equal to 1.5 means 01:30 AM). A timeslot of
1 minute is chosen because: (i) it provides sufficient training
data compared to larger timeslots (e.g. 15 min), and (if)
time-varying dependencies of the dynamic system are better
captured compared to smaller time slots (e.g. 1s).

To simulate data, we select the power supplied to the
fan for specified time intervals, representing the final value
of power at the end of this interval. This power value is
chosen randomly from a uniform distribution in the range
[100, 200). Fan power is linearly increased from the initial
value (at the start of this selected interval) to the final value
(at the end of the selected interval). For every interval, pro-
cess heat is randomly sampled from a Gaussian distribution

with a mean of 30 W and a standard deviation of 1 W.
Gaussian noise is added to the simulated 7} b , to get realistic
training data for neural networks. Weather data (ambient
temperature, pressure, and humidity) is collected for 2017
and used for calculating Qt [2].

The python package SImpy is used for simulation. The
temperature range is assumed to be 9°C. The operatlonal

limits of Tb are assumed to be from T', ' =9°Cto T
36°C, and the average efficiency is set to 1 /n=006. A total
of 5 datasets were simulated using the same weather data for
2017, thus resulting in data of 5 years.

3.2. Simulation design

The numerical simulations reported in this section aim
to show the applicability of the proposed models C-Flex and
CWS-Flex described in the § 2.3.1 and § 2.3.2 respectively,
by analyzing the related results in terms of expected prof-
its. generation of bids and computational aspects. For this
reason, a realistic experimental setting is investigated.

Simulations were carried out gradually increasing the
number of scenarios considered, from 10 up to a maximum
of 50. Then, the maximum number of scenarios were set to
50 since this was a trade-off between computation time and
negligible fluctuation in the quality of the solutions.

In order to fit the ECT model with a neural network we
split the dataset in 90% training and 10% test set and train
a neural network with 3 hidden layers with 30, 50 and 20
neurons respectively. We used ReLU activation functions
and applied interval arithmetic and ReLU pruning method
as reported in § 2.4.2 to reduce the overall complexity of the
resulting MILP formulation.

Finally, we obtain a trained neural network with a pre-
dictive accuracy of 99.5% on the test dataset, showing good
generalization capability of the neural network.

We have considered the participant bidding simultane-
ously in the energy and the reserve market for three different
days, i.e. February 15th, June 15th and October 15th of the
2017. We used the energy and reserve market prices for that
days from the Belgian System Operator website [14].

Real datasets, for weather conditions and ECT-thermal
load, were collected within the INDUFLEX/MOONSHOT
project [25] and used to produce predictions.

In particular, we generated 50 different scenario profiles
for the weather conditions and ECT-thermal load using the
Gaussian Copula method [27]. For each of the aforemen-
tioned variables, we built a predictor using historical data.
Then, the forecasts from such a predictors were used as ex-
planatory variables for a quantile regression. We considered
each scenario having the same probability of occurrence.
The details of the scenario generation procedure are reported
in appendix to this paper.

In this regard, we point out that probabilistic scenario
generation is a vast research topic and finding accurate
scenario generation methodologies is out of the scope of this
work.
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Page 9 of 15



A Data-Driven Optimization Framework for Industrial Demand-Side Flexibility

To determine the upward and downward sequence of
activation calls U Ca” and Dca“ respectively, for each of the
50 generated scenar10 we ﬁrst have set the maximum number
of activations QU and QD Then, for each scenario, the

sequences Ucall and D”‘tll were generated randomly, keeping
into account such a maximum number of activations.

We have set both QE and Q]kD to 4 per day (i.e. 1 hours
per day). This choice was inspired by a standard reserve
activation scheme adopted by the Belgian System Operator
[13].

In each scenario, the starting water basin temperature
is randomly chosen in the interval [10°C, 20°C]. The same
interval is considered E)r the minimum and maximum final
temperature T and T'g,

We assumed the maximum battery capac1ty = 200
kWh and the minimum E = 0 kWh. Also, we set E, . =

E. =0 2F and Elmt = Eend = 0.8E for every scenario.

Finally, the efficiency charging #, and discharging 5, are
both set at 0.97 while we assumed the loss factor p = 0.99.

We used python programming language and PyTorch
libraries to perform the training of the neural network.

The computational experiments were executed on a stan-
dard Dell Laptop, with Windows 10 Enterprise 64-bit oper-
ating system, an Intel(R) core(TM) i5 processors and 8GB
of RAM.

The MILP formulation is solved using Gurobi 9.5.

4. Results

Figure 1 show, for each of the 3 case studies analyzed
(i.e. 3 different days of the year), the energy offers in the
day-ahead market provided by the two proposed models: the
model which includes the energy storage (i.e.: CWS-Flex)
and the model without energy storage (i.e.: C-Flex).

In each of these case studies, the difference between the
C-flex and CWS-flex models mainly consists in the fact that
the latter generally tends to purchase energy (therefore with
a negative profit) when the market price is lower, while it
injects energy into the power network (with a positive profit)
in the times of the day when the energy cost is higher. This
behavior is evident in all cases showed in the figures 1a, 1b
and lc. As a result of the reported case studies, the daily
expected cost for purchasing the energy necessary to run the
ECT process is higher in the C-Flex model than in the CWS-
flex model as shown in table 1 (i.e. in the first column: energy
market type). This is because the battery included in such a
model is used to store energy when it is economically more
convenient to buy from the electricity market, and then use
it to feed the ECT process while injecting any surplus into
the electricity grid, reducing the daily net energy cost.

On the other hand, figures 2 and 3 show, in each of
the case studies, the upward and the downward capacity
reservations for the C-Flex and for the CWS-Flex model
respectively.

Similarly to what resulting from the energy market, also
in the reserve market, the CWS-Flex model produces higher
capacity reservation quantities than the ones resulting from

C-Flex and CWS-Flex energy offers
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Figure 1: Energy offers and energy prices for (a) the 15th of

February, (b) the 15th of June and (c) the 15th of October
2017 for both C-Flex and CWS-Flex model cases respectively.

the C-Flex model in both upward and downward market for
all the reported cases.

Particularly, the table 1 shows a comparison between
the expected profit of the two proposed models both in
the upward and in the downward market for the different
simulated days of the year.
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Capacity reservations for C-Flex model case
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Figure 2: Upward and downward capacity reservations and

prices for (a) the 15th of February, (b) the 15th of June and
(c) the 15th of October 2017 for the C-Flex case.

According to the table 1, considering the expected profit
from the combined participation in the downward and up-
ward markets, the use of an electrical storage in the CWS-
Flex model results in increasing the expected profit by a
factor ranging from a minimum of 0.86 to a maximum of
2.5 compared to the C-flex model without electrical storage.

In particular, the battery allows part of its capacity to
be reserved in the event of an activation request from the

Capacity reservations for CWS-Flex model case

S 150 805
v
c 100 =
C p -
° 60 o
S =
S 50 — AN 50 §
g 100097 g 0 7 g / 7 llao &
0 / Wr oy c
s 0 30 6
2 + 111§ 1] B
= J o o 20 >
é -0 I \\ ,’/ N / 10 8
© S 2
© _100 0
5 10 hours 15 20
(a)
150
= 80 s
2 100 %
C
el 60 i
© 0
S s i o
o 7 x : "y =
0 Al 0 7 n o N70 057 la &
© aBdiiagiddaiddiiag 22%% c
2 s
O >
© 20 G
o 50 o
o
L
-100 - 0
5 10 hours 15 20
(b)
_ 150 .
2 g
4 60 =
= 100 )
c 5
2 50 &
© 0
> 30 2 70 o
@ anmnnn A A0 A0 annnad BB 0 g n g40 2
O lgdgdudecapdedeZpdadcdededl. s
> )
= g
R E—— P N 20 §
o -501 S g i
© N &
O 10
-100 i

5 10 Kours 15 20
UP cap mm DWcap —— UPprice ---—-- DW price
(©

Figure 3: Upward and downward capacity reservations and
prices for (a) the 15th of February, (b) the 15th of June and
(¢) the 15th of October 2017 for the CWS-Flex case.

grid operator, and therefore the available reserve capacity
can generally be greater than what is available in the C-Flex
case. In fact, the latter (without an electrical storage), can
only decrease (downward) or increase (upward) its absorbed
power within the limit allowed by the operational constraints
of the CT process described in the 2.3.1, while the CWS-Flex
model can store/inject an excess/reduction of power from or
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—— fan power —— upward activation compensation power
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Figure 4: CWS-Flex model case: fan power (p,,), activation
power (p24) and compensation power (pzt) profiles for a single
scenario.
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Figure 5: CWS-Flex model case: pB¢/pPC powers for the
baseline charging and discharging cycle are reported with black
dotted line, while the charging and discharging powers pﬂ‘,/p:t'
for the reported scenario k are denoted with the continuous
line. Dashed magenta line reports the energy battery E, .
Notice that the two charging/discharging cycles (i.e.: scenario
and baseline) are exactly the same except at 17 : 00pm when
the there is an additional discharging contribution from pk""th of
about 20kW to compensate the upward activation call Py

to the power grid using the battery. This concept is showed
as illustrative example in the following paragraph.

4.1. Impact of the electrical storage on the
capacity reservation

Figures 4-6 show the electrical variables for the CWS-
Flex model (i.e. p ;. Ey ;. pz*'j and p;") and for the C-Flex
model (i.e. py,, p:rj and pit‘t) respectively, in one typical
scenario during the day of 15th of February.

For this scenario, the upward reservation capacity is
around 50kW in both cases. However, in the CWS-Flex
model (fig. 4), the upward activation call pi“t (which requires
lowering the total power absorbed from the grid of the same
amount) is partially balanced by the discharging power pi’t’
(for an amount of nearly 20kW) as shown in the figure 5.
The rest of the upward activation call is covered by reducing

200

—— fanpower —— upward activation compensation power
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-
=)
S

power [kW]
g
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Figure 6: C-Flex model case: fan power (p,,), activation
power (p?“) and compensation power (1’7,—) profiles for a single
scenario.
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Figure 7: Water basin temperature profiles for C-Flex and
CWS-Flex models. The temperature profiles shown correspond
to the scenario considered through the figures 4 - 6.

the fan power p, , and by the compensation power pfrj for a
value lower than 20kW (fig. 4).
Conversely, in the C-Flex model (fig. 6), the upward

activation call p}"; is balanced almost entirely by the com-

S+

k) and only partially by reducing the fan

pensation power p
power py ;.

Since the compensation power is greater in the C-Flex
model case than in the CWS-Flex case, this determines an
increase of the penalty terms in the eq. 1 which lower the
profit expectation for the C-Flex model case compared to the
CWS-Flex case.

4.2. Computational aspects

Computational aspects are shown in Table 2, in which
model statistics are organized by different number of total
scenarios used for the proposed MILP models.

In such a table we also report the number of binary
variables without applying the weight matrix sparsifica-
tion (i.e.: second row of the table 2) and the final number
of binary variables for a reduced problem after using the
methodologies detailed in the § 2.4.2 (i.e.: third row of the
table 2).
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market type energy [€] upward res. [€] down. res. [€] TOTAL [€]

C CWS C CWS ¢ CWS C CWS
15th February | —37.01 —36.48 | 26.55 47.19 2.35 18.21 -812 2892
15th June -22.05 -14.18 | 29.18 53.39 0.61 2.13 773 4134
15th October | —24.34 -10.75 | 12.69 45.54 2.82 8.91 —-883 43.60

Table 1

Expected profit breakdown for both C-Flex and CWS-Flex model in the three analyzed case studies. The table shows the
contribution of each market to the total profit reported in the eq. (1). Notice that the upward and downward reservation profits
take into account the last 3 terms of the eq. (1), i.e. expected profit from: reserve market, reserve activation and expected penalty.

n. scenarios 10 20 30 40 50
Cont. variables 203,924 407,464 611,004 814,544 1018,084
Binary variables (original problem) 96,000 192,000 288,000 384,000 480,000
Binary variables (reduced problem) 80, 862 161,466 242,390 323,567 403,382
Relative gap [%] 0.000 0.000 0.0013 0.0018 0.0031
Execution time [s] 337 1199 2645 4280 7322

Table 2

Model statistics using different number of total scenario K (average values).

Using matrix sparsification we were able to reduce the
total number of binary variables of around 15-20 % (de-
pending upon the number of considered scenarios). This
facilitates the MILP solver computation time and increase
the scalability.

As shown in table 2, even for the case of 50 scenarios, we
achieve an average computation time of 7503 seconds (less
than 2 hours) with a relative optimality gap of 0.0026 %.

5. Conclusions and Future Outlook

In this paper, we introduce a framework to bid energy
flexibility of industrial process in the joint energy and re-
serve market. First, we use a deep neural networks with
ReLU activation functions to capture the complexity and
the non-linearity of the industrial process. Then, we convert
the non-linear ReLUs into linear constraints using binary
variables and formulate the bidding problem as a Mixed-
Integer-Linear-Programming.

Finally we implement weight sparsity to reduce the com-
plexity of the MILP problem to facilitate the MILP-solver
execution.

Using realistic dataset, we demonstrate the applicability
of the proposed framework considering an evaporative cool-
ing tower used in the chemical industry and offering energy
flexibility in the Belgian electricity market.

A first challenge of the proposed method consists in
assuming Deep Neural Networks with only ReLU (or ReLU-
like) activation functions. Although this may be a limitation,
a vast literature in deep learning indicates such activation
function having strong advantages over traditional activation
functions (e.g., sigmoid and tanh), in reducing vanishing
gradient issues, computational efficiency, and increasing
convergence performance [17]. Moreover, the adoption of
ReLU activations allows us to introduce binary decision
conditions which are conceptually identical to the ones used
in Decision-Tree based methods [7]. Therefore, the proposed

framework could, in principle, be applied also to the case
in which we use such approaches as approximating function
instead of neural networks.

Furthermore, the proposed method considers a scenario-
based uncertainty both for the parameters related to indus-
trial process (outside temperature, heating demand, etc )
and for electricity market (market prices) . However, the
quantification of the number of scenarios to be considered
typically faces a trade-off between accuracy and computa-
tional efficiency. As such, in some use cases, the decision of
the most suitable number of scenarios can be a complex task.
This challenge provides further research opportunities to
expand on the current work. Indeed, to address these critical
aspects in future research, different methodologies than the
scenario-based approach can be considered (such as robust
optimization or chance-constrained optimization)[31], eval-
uating them in terms of applicability and computational
feasibility.

Finally, the proposed approach is based on a pure-data
driven method. Despite it is technically possible to acquire
and store huge amount of real-data, in many practical sit-
uations, the volume of useful experimental data for com-
plex physical systems (e.g. industrial processes) is limited
due to many factors (e.g. the cost of a pervasive sensor
infrastructures, data-sharing privacy issues etc.) The specific
data-driven approach to the predictive modelling of such
systems depends crucially on the amount of data available
and on the complexity of the system itself. For this reason,
future work is directed towards utilizing different types of
neural networks for modelling industrial processes, such as
Physics-Informed Neural Networks [29]. These hybrid data-
driven methods can be applied when the underlying physics
of the process is partially known and several scattered mea-
surements (of a primary or auxiliary state) are available.

C. Manna, M. Lahariya, F. Karami, C. Develder: Preprint submitted to Elsevier

Page 13 of 15



A Data-Driven Optimization Framework for Industrial Demand-Side Flexibility

Integrating known (approximate) information about the un-
derlying physics of the process to control, accurate data-
driven models (such as neural networks) can still be con-
structed using much less amount of data compared with
those necessary for pure data-driven methods.
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Appendix: Scenario generation

Let g, be a set of forecasted quantiles for the variable
of interest p,, ., available at time ¢ for the lead time ¢+ k (and
with k = 1... K), based on past observations p,_, ..., p;_,.
For such a variable, a set of scenario s = 1 ... .S is generated
using the following steps:

1. generate .S random vectors X® of dimension K from a
multivariate Gaussian distribution with zero mean and
Pearson’s covariance matrix estimated using historical
observations of the target variable;

2. the final scenario Y® of dimension K results from the
following equation:
Y= F! (cp(x;)) VK, s.
where @ is the distribution function of the standard
normal random variable applied to each component of X5,
and F~! is the inverse of the cumulative distribution function
interpolated using the forecasted quantiles g, .

For a detailed description of the scenario generation
method used in this paper, the reader may refer to the work
by Pinson et al. in [27].

In this paper we use the method described to produce
scenario for all the input variables of the ECT process,

such as: the outdoor temperature T the heat load Q the
atmospheric pressure A and the relative humidity H'.
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